• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙江舟山海岸带古木埋藏区铁的微生物成矿作用

    吴自军 贾楠 袁林喜 孙立广 DanielleFortin

    吴自军, 贾楠, 袁林喜, 孙立广, DanielleFortin, 2008. 浙江舟山海岸带古木埋藏区铁的微生物成矿作用. 地球科学, 33(4): 465-473.
    引用本文: 吴自军, 贾楠, 袁林喜, 孙立广, DanielleFortin, 2008. 浙江舟山海岸带古木埋藏区铁的微生物成矿作用. 地球科学, 33(4): 465-473.
    WU Zi-jun, JIA Nan, YUAN Lin-xi, SUN Li-guang, Danielle Fortin, 2008. Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province. Earth Science, 33(4): 465-473.
    Citation: WU Zi-jun, JIA Nan, YUAN Lin-xi, SUN Li-guang, Danielle Fortin, 2008. Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province. Earth Science, 33(4): 465-473.

    浙江舟山海岸带古木埋藏区铁的微生物成矿作用

    基金项目: 

    中国科学院知识创新工程重要方向项目 KZCX3-SW-151

    中国博士后基金 20060400723

    详细信息
      作者简介:

      吴自军(1973—), 男, 博士后, 主要研究方向为生物地球化学和地质微生物学.E-mail:zjwu@ustc.edu.cn

    • 中图分类号: P512

    Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province

    • 摘要: 以浙江舟山海岸带铁矿石为研究对象, 通过对铁矿石及其周围环境背景样品的形态学显微观察、矿物学及地球化学分析, 结果显示渗漏水沉淀铁泥中存在大量形貌与Leptothrix ochraceaGallionella ferruginea中性铁氧化菌极为相似的微生物鞘, 该微生物可促进Fe2+的氧化和Fe3+的快速沉淀, 并且细胞最终被完全矿化后将永久保存起来.与此相对应的是: 在铁矿石内部存在大量的似球形和丝杆状的针铁矿, 并且还保留了死亡的铁细菌外鞘, 这些特征揭示该铁矿石与微生物历史活动密切相关.将现代渗漏水铁泥中铁细菌的矿化作用和铁矿石中保留的微生物活动记录相对比, 为该环境下的铁矿石生物成矿作用及其成因机制提供了良好的佐证.铁矿石的形成与古木堆积密切相关, 古木埋藏腐烂过程产生的腐植酸加剧了基岩及其周围土壤中的铁淋滤进入到潮间带, 从而为铁矿石形成提供充足的铁来源.该研究有助于更好理解和认识地史时期腐植质及微生物在铁矿床形成中的作用.

       

    • 图  1  采样地质背景

      a, b.采样地理位置; c.采样点地质剖面示意

      Fig.  1.  Map showing the geological background of sampling sites

      图  2  铁矿石XRD分析图谱

      Fig.  2.  The XRD patterns for the sample of iron ore

      图  3  铁泥样品显微观察(SEM和HRTEM)

      a.大量的Leptothrix ochracea铁氧化菌; b.Gallionella ferruginea铁氧化菌; c和d.HRTEM显示细菌鞘外表被球形矿物包裹

      Fig.  3.  The SEM and HRTEM photos of iron mud in seepage system

      图  4  铁泥生物超薄切片样品TEM、EDS及SEAD分析图谱

      a, b为早期表面矿化阶段; c为胞内矿化阶段; d为细胞完全矿化阶段; e为b处的EDS图谱; 黑粗箭头表示EDS位置; f为b处的SEAD图谱; 图谱中Cu峰来自铜网格

      Fig.  4.  Thin-section TEM、EDS and SEAD analyses images

      图  5  铁矿石HRTEM、EDS及SEAD图谱

      HRTEM显示铁矿石由空白圆形区域组成, 周围被毛发状或球状物质包裹(a、b); 铁矿石中保留了死亡的微生物鞘并且其表面被球状或针状矿物覆盖(c); HRTEM-SEAD图谱显示为针铁矿(d); EDS显示矿物组成主要为铁(e)

      Fig.  5.  The photos of HRTEM, EDS and SEAD of iron ore

      表  1  铁矿石及其相关环境样品化学组成(%)

      Table  1.   The chemical composition of iron ore and the surrounding geological material (%)

      表  2  采样点水体物理化学组成

      Table  2.   The physical and chemical composition of water for sampling sites

    • [1] Akai, J., Akai, K., Ito, M., et al., 1999. Biologically induced iron ore at Gunmairon mine, Japan. Am. Mineral. , 84 (1-2): 171-182. doi: 10.2138/am-1999-1-219
      [2] Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite reef fromthe Early Archaean era of Australia. Nature, 441: 714-718. doi: 10.1038/nature04764
      [3] Beard, B. L., Johnson, C. M., Cox, L., et al., 1999. Iron isotope biosignatures. Science, 285 (5435): 1889-1892. doi: 10.1126/science.285.5435.1889
      [4] Brown, D. A., Sherriff, B. L., Sawicki, J. A., et al., 1999. Precipitation of iron minerals by a natural microbial consortium. Geochimicaet Cosmochimica Acta, 63 (15): 2163-2169. doi: 10.1016/S0016-7037(99)00188-X
      [5] Chan, C. S., De Stasio, G., Welch, S. A., et al., 2004. Microbial polysaccharides template assembly of nanocrystalfibers. Science, 303 (5664): 1656-1658. doi: 10.1126/science.1092098
      [6] Che, Y., Sun, Z. Y., Chen, J. Z., 2000. Microbial mineralizations of ironin modern sedimentation environments. Geological Journal of China Universities, 6 (2): 278-281 (in Chinese with English abstract).
      [7] Croal, L. R., Johnson, C. M., Beard, B. L., et al., 2004. Iron isotope fractionation by Fe (Ⅱ) -oxidizing photoautotrophic bacteria. Geochimicaet Cosmochimica Acta, 68: 1227-1242. doi: 10.1016/j.gca.2003.09.011
      [8] Dai, Y. D., Song, H. M., Shen, J. Y., 2003. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science in China (Series D), 33 (8): 751-759 (in Chinese).
      [9] Edwards, K. J., Bach, W., McCollom, T. M., et al., 2004. Neutrophilic iron oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21 (6): 393-404. doi: 10.1080/01490450490485863
      [10] Ehrlich, H. L., 2002. Geomicrobiology of iron. In: Ehrlich, H. L., ed., Geomicrobiology. Marcel Dekker, Inc, New York, 345-428.
      [11] Emerson, D., Weiss, J. V., 2004. Bacterial iron oxidation in circumneutral freshwater habitats: Findings from the field and laboratory. Geomicrobiology Journal, 21 (6): 405-414. doi: 10.1080/01490450490485881
      [12] Ferris, F. G., 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiology Journal, 22 (3-4): 79-85. doi: 10.1080/01490450590945861
      [13] Ferris, F. G., Fyfe, W. S., Beveridge, T. J., 1988. Metallic ion binding by Bacillus Subtilis: Implications for the fossilization of microorganisms. Geology, 16 (2): 149-152. doi: 10.1130/0091-7613(1988)016<0149:MIBBBS>2.3.CO;2
      [14] Ferris, F. G., Konhauser, K. O., Lyven, B., et al., 1999. Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiology Journal, 16 (2): 181-192. doi: 10.1080/014904599270677
      [15] Fortin, D., Langley, S., 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72 (1-2): 1-19. doi: 10.1016/j.earscirev.2005.03.002
      [16] Hallberg, R., Ferris, F. G., 2004. Biomineralization by Gallionella. Geomicrobiology Journal, 21 (5): 325-330. doi: 10.1080/01490450490454001
      [17] Hu, M. A., 2000. Metallogenic significance of organisms and organic matters in low temperature mineralization system. Earth Science—Journal of China University of Geosciences, 25 (4): 375-379 (in Chinese with English abstract).
      [18] James, R. E., Ferris, F. G., 2004. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem. Geol. , 212 (3-4): 301-311. doi: 10.1016/j.chemgeo.2004.08.020
      [19] Kennedy, C. B., Martinez, R. E., Scott, S. D., et al., 2003a. Surface chemistry and reactivity of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geobiology, 1: 59-66. doi: 10.1046/j.1472-4669.2003.00001.x
      [20] Kennedy, C. B., Scott, S. D., Ferris, F. G., 2003b. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 20 (3): 199-214. doi: 10.1080/01490450303873
      [21] Kennedy, C. B., Scott, S. D., Ferris, F. G., 2004. Hydrothermal phase stabilization of2-line ferrihydrite by bacteria. Chem. Geol. , 212: 269-277. doi: 10.1016/j.chemgeo.2004.08.017
      [22] Konhauser, K. O., Hamade, T., Raiswell, R., et al., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30 (12): 1079-1082. doi: 10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
      [23] Lizasa, K., Kawasaki, K., Maeda, K., et al., 1998. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriohs Thoughs, Vanuatu backarc, southwestern Pacific. Marine Geology, 145: 1-21. doi: 10.1016/S0025-3227(97)00112-6
      [24] Martinez, R. E., Smith, D. S., Pedersen, K., et al., 2003. Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ. Sci. Technol. , 37 (24): 5671-5677. doi: 10.1021/es0342603
      [25] McKay, D. S., Gibson, E. K. J., Thomas-Keprta, K. L., et al., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273 (5277): 924-930. doi: 10.1126/science.273.5277.924
      [26] Peng, X. T., Zhou, H. Y., Wu, Z. J., et al., 2007. Biomineralization phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52 (3): 367-379. doi: 10.1007/s11434-007-0042-2
      [27] Pierson, B. K., Parenteau, M. N., Griffin, B. M., 1999. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring. Appl. Environ. Microbiol. , 65 (12): 5474-5483. doi: 10.1128/AEM.65.12.5474-5483.1999
      [28] Roden, E. E., Sobolev, D., Glazer, B., et al., 2004. Potential for microscale bacterial Fe redox cycling at the aerobicanaerobic interface. Geomicrobiol. J. , 21: 379-391. doi: 10.1080/01490450490485872
      [29] Sun, L. G., Xie, Z. Q., Shen, X. S., et al., 2000. Ancientwood layer at Guanyin Bayin Zhujiajian, Zhejiang Province being discovered and its significance. Ziran Zazhi, 22 (6): 354-358 (in Chinese with English abstract).
      [30] Tazaki, K., 2000. Formation of bandediron-manganese structures by natural microbial communities. Clays and Clay Minerals, 48 (5): 511-520. doi: 10.1346/CCMN.2000.0480503
      [31] Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. On the geobiological evaluation of hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences, 32 (6): 727-740 (in Chinese with English abstract).
      [32] Yin, H. F., Xie, S. C., Zhou, X. G., 1994. Advances and trends on the study of microbial metallogenesis. Earth Science Frontiers, 1 (3-4): 148-156 (in Chinese with English abstract).
      [33] Zhang, Z., Zhang, B. G., Hu, J., et al., 2006. A preliminary discussion on the bio-metallogenesis of Tl deposits in the low-temperature minerogenetic province of southwestern China. Science in China (Series D), 36 (10): 894-904 (in Chinese).
      [34] 车遥, 孙振亚, 陈敬中, 2000. 现代沉积环境中铁的微生物矿化作用. 高校地质学报, 6 (2): 278-281. doi: 10.3969/j.issn.1006-7493.2000.02.027
      [35] 戴永定, 宋海明, 沈继英, 2003. 河北宣龙铁矿化石细菌. 中国科学(D辑), 33 (8): 751-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308005.htm
      [36] 胡明安, 2000. 低温成矿系列中生物有机质的矿床学意义. 地球科学——中国地质大学学报, 25 (4): 375-379. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004007.htm
      [37] 彭晓彤, 周怀阳, 吴自军, 等, 2007. 热泉微生物的矿化作用和机制: 来自华南富硅热泉光合自养微生物席中的证据. 科学通报, 52 (1): 89-99. doi: 10.3321/j.issn:0023-074X.2007.01.016
      [38] 孙立广, 谢周清, 沈显生, 等, 2000. 浙江朱家尖观音湾古木层的发现及其意义. 自然杂志, 22 (6): 354-358. doi: 10.3969/j.issn.0253-9608.2000.06.011
      [39] 谢树成, 殷鸿福, 解习农, 等, 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学——中国地质大学学报, 32 (6): 727-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706002.htm
      [40] 殷鸿福, 谢树成, 周修高, 1994. 微生物成矿作用研究的新进展和新动向. 地学前缘, 1 (3-4): 148-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY404.004.htm
      [41] 张忠, 张宝贵, 胡静, 等, 2006. 中国西南低温成矿域铊矿床生物成矿初步研究. 中国科学(D辑), 36 (10): 894-904. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200610002.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3553
    • HTML全文浏览量:  99
    • PDF下载量:  88
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-10-29
    • 刊出日期:  2008-07-25

    目录

      /

      返回文章
      返回