Adsorption Mechanisms between Dissolved Organic Matter and Endocrine Disruptors from Landfill Leachate
-
摘要: 为了调查垃圾渗滤液中的溶解有机质(DOM) 及内分泌干扰物(EEDs) 的相互作用机理, 在实验室条件下研究了DOM对EEDs如双酚A (BPA)、雌二醇(E2)和雌酮(E1) 的吸附等温线, 并通过FTIR、1HNMR和ESR技术, 分析了DOM与EEDs的吸附机理.结果表明, 垃圾渗滤液中DOM对3种EEDs的吸附等温线符合Freundlich方程, 并且可用DOM与EEDs的吸附常数Kf预测EEDs的辛醇/水分配系数(Kow) 或有机碳分配系数(Kdoc), 其中直线回归方程为: lgKdoc=2.062Kf-5.065 (R2=0.9958, P=0.041 < 0.05).分析也表明DOM吸附EEDs的吸附过程至少存在离子键、共价键和电荷转移等多种吸附机制的协同作用.Abstract: To understand the interactions between dissolved organic matter (DOM) and environmental endocrine disruptors (EEDs) in landfill leachate, sorption experiments and the interaction between targets EEDs, including BPA, E2, E1, and DOM from leachate were investigated.It was found that adsorption isotherms fit the Freundlich equation well.The regression equation between binding coefficient, Kf, and the logarithm value of Kow or Kdoc of compounds was determined (R2=0.995 8, P=0.041 < 0.05).Both the unreacted DOM and the DOM that reacted with EEDs were analyzed by FTIR, 1HNMR and ESR.The results suggested that multiple binding mechanisms might occur simultaneously in the adsorption process with the formation of (1) ionic bonds (proton-transfer) between carboxylate groups of DOM and positively charged compounds; (2) hydrogen bonds between structure moieties of EEDs and DOM; and (3) charge-transfer bonds in electron donor-acceptor processes.
-
表 1 内分泌干扰物Freundlich方程拟合结果
Table 1. Isotherm parameters determined by Freundlich equation
表 2 未键合DOM和键合EEDs后的DOM ESR参数
Table 2. ESR data of R1-3 and the bound R1-3 with EEDs
-
[1] Averett, R. C., Leenheer, J. A., McKnight, D. M., 1989. Humic substances in the Suwannee River, Georgia: Interactions, properties, and proposed structures. US Geological Survey, Washington, 87-557. [2] Baes, A. U., Bloom, P. R., 1989. Diffuse reflectance and transmission Fourier transforminfrared spectroscopy of humic and fulvic acids. Soil Sci. Soc. Am. J. , 53: 695-700. doi: 10.2136/sssaj1989.03615995005300030008x [3] Chen, Y. L., Hu, J., Zhang, Q. L., et al., 1998. Studies on mechanisms involved in viscosity reduction of Kenxi crude oil. Earth Science-Journal of China University of Geosciences, 23(6): 605-609(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX806.011.htm [4] Chin, Y. P., George, R. A., Karlin, M. D., 1997. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. , 31: 1630-1635. doi: 10.1021/es960404k [5] Chiou, C. T., Malcol m, R. L., Brlnton, T. I., et al., 1986. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. , 20: 502-508. doi: 10.1021/es00147a010 [6] Foster, R., 1969. Organic charge-transfer complexes. Academic Press, New York, 470. [7] Fu, M. Y., Zhou, L. X., 2007. Effect of dissolved organic matter from landfill-leachates on dissolution of Pb in soils. Environmental Science, 28(2): 243-248(in Chinese with English abstract). doi: 10.3321/j.issn:0250-3301.2007.02.004 [8] Gordon, C., Geronimo, V. S., Jonathan, L., et al., 1989. Environmental fate of alachlor and metolachlor. Reviews of Environmental Contamination and Toxicology, 110: 1-74. [9] Gunnarsson, J. S., Granberg, M. E., Nilsson, H. C., et al., 1999. Influence of sediment-organic matter quality on growth and polychlorobiphenyl bioavailability in echinodermata (Amphiura filiformis). Environ. Toxicol. Chem. , 18: 1534-1543. [10] Khan, S. U., 1974. Adsorption of bipyridylium herbicides by humic acid. J. Environ. Qual. , 3: 202-206. doi: 10.2134/jeq1974.00472425000300030003x [11] Kogel-Knaber, I., Totsche, K. U., 1998. Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils. Phys. Chem. Earth, 23(2): 179-185. doi: 10.1016/S0079-1946(98)00010-X [12] Kotzias, D., Beyerle-Pfnur, R., 1989. Characterization of humic substances by ESR spectroscopy. J. Appl. Radiat. Isot. , 40: 897-900. doi: 10.1016/0883-2889(89)90013-0 [13] Li, H. M., Chen, H. H., Zheng, X. L., 2006. Application of riverbed quiferous system to indoor simulation of decontamination of aromatic hydrocarbons. Earth Science-Journal of China University of Geosciences, 31(6): 873-878(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200606018.htm [14] Li, J. P., Li, X. Q., Wang, C. Z., et al., 2004. Modeling study on transport law of leachate pollutant COD in vadose zone. Journal of Jilin University (Earth Science Edition), 34(4): 607-611(in Chinese with English ab-stract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200404022.htm [15] McGlnley, P. M., Katz, L. E., Weber, W. J., 1993. A distributed reactivity model for sorption by soils and sediments. 2. Multicomponent systems and competitive effects. Environ. Sci. Technol. , 27(8): 1524-1531. doi: 10.1021/es00045a006 [16] Means, J. C., Wood, S. G., Hassett, J. J., et al., 1989. Sorption of amino- and carboxy-substituted polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. , 16: 93-98. doi: 10.1021/es00096a007 [17] Raber, B., Kogel-Knaber, I., Stein, C., et al., 1998. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere, 36(1): 79-97. doi: 10.1016/S0045-6535(97)00352-4 [18] Senesi, N., 1992. Binding mechanisms of pesticides to soil humic substances. The Science of the Total Environment, 123-124: 63-76. doi: 10.1016/0048-9697(92)90133-D [19] Wilson, M. A., 1981. Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. E. J. SoilSci. , 32(2): 167-186. [20] Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. On the geobiological evaluation of hydrocarbon source rocks. Earth Science-Journal of China University of Geosciences, 32(6): 727-740(in Chinese with English abstract). doi: 10.1007/s11707-007-0041-2 [21] Yamamoto, H., Liljestrand, H., 2004. Partitioning of selected estrogenic compounds between synthetic membrane vesicles and water: Effects of lipid components. Environ. Sci. Technol. , 38(4): 1139-1147. doi: 10.1021/es034311w [22] Yonebayashi, K., Hattori, T., 1989. Chemical and biological studies on environmental humic acids. Ⅱ. 1HNMR and IR spectra of humic acids. Soil Science and Plant Nutrition, 35: 383-392. doi: 10.1080/00380768.1989.10434771 [23] Yongkoo, S., Linda, S. L., 2000. Effect of dissolved organic matters in treated effluents on sorption of atrazine and prometryn by soils. Soil Sci. Soc. A. J. , 64(6): 1976-1983. doi: 10.2136/sssaj2000.6461976x [24] 陈艳玲, 胡江, 张巧莲, 等, 1998. 垦西特稠油化学降粘机理的研究. 地球科学——中国地质大学学报, 23(6): 605-609. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX806.011.htm [25] 付美云, 周立祥, 2007. 垃圾渗滤液水溶性有机物对土壤Pb溶出的影响. 环境科学, 28(2): 243-248. doi: 10.3321/j.issn:0250-3301.2007.02.004 [26] 李海明, 陈鸿汉, 郑西来, 2006. 河床含水系统对单环芳烃净化特征室内模拟. 地球科学——中国地质大学学报, 31(6): 873-878. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606018.htm [27] 李建萍, 李绪谦, 王存政, 等, 2004. 垃圾渗滤液有机污染组分在包气带中衰减规律的模拟研究. 吉林大学学报(地球科学版), 34(4): 607-611. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200404022.htm [28] 谢树成, 殷鸿福, 解习农, 等, 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学——中国地质大学学报, 32(6): 727-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706002.htm