Multivariable Chaotic Discrimination for Slope Evaluation According to Their Nonlinear Displacement-Time Sequence
-
摘要: 以实测非线性时间序列为对象, 通过估计延迟时间与嵌入维数的相空间重构方法, 采取排除时间相关性点对的方法计算边坡系统关联维数D2;采用改进的Kantz法计算最大Lyapunov指数、以K2熵作为Kolmogorov熵的近似, 并引入近似熵ApEn及系统复杂度混沌特征指标, 研究了边坡演化的多元混沌特征.通过实例分析, 发现多数边坡系统关联维数D2为非整数, 最大Lyapunov指数、熵值均大于零以及系统复杂度位于(0, 1) 区间偏小值, 通过与确定性系统特征量的比较, 揭示了边坡系统的混沌特征, 并得出临滑阶段边坡混沌特征最为明显的结论.
-
关键词:
- 边坡演化 /
- 非线性位移-时间序列 /
- 相空间重构 /
- 多元混沌判别
Abstract: According to the displacement-time sequence data of several slopes, the multivariable chaotic features of slope evaluation process are discussed, including reconstruction for their phase-space by the estimation of delayed time and embedded dimension method, calculation for the correlation dimension D2 of the slope system by eliminating the time correlative points.Then, the multivariable chaotic features of the slopes are studied by calculating their maximum Lyapunov index using the improved Kantz method and taking K2 as the similar one of Kolmogorov entropy, and by introducing the approximation entropy-ApEn and the chaotic feature index describing the complexity degree of the system.Example analysis shows that the correlation dimension D2 is a non-integral number for most of slope systems, the maximum Lyapunov index and the entropy value are all bigger than 0, and the complexity degree of the system is located on the interval of (0, 1).By comparing the calculated data with the actual characteristic value of the slope systems, the chaotic features of the slope system are revealed and the chaotic features are clearer in the time period closed to sliding. -
表 1 不同边坡混沌特征量计算值
Table 1. Calculation data show the chaotic features of different slopes
表 2 不同状态运动的特征量取值比较
Table 2. Comparison of different characteristic values from different motion types of slopes
-
[1] Cheng, Q. M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science-Journal of China University of Geosciences, 31(3): 337-348(in Chinese with English abstract). [2] Grassberger, P., Procaccia, I., 1983. Measuring the strangeness of strange attractors. Physica D, 9: 189-208. doi: 10.1016/0167-2789(83)90298-1 [3] Huang, R. Q., Xu, Q., 1996. The application of nonlinear theory in engineering geology. Bulletin of National Natural Science Foundation of China, 2: 79-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZKJJ199602000.htm [4] Huang, S. W., 2002. Study on chaotic vibration of engineering structures, algorithms of chaotic maximum optimization and its application [Dissertation]. Hehai University, Nanjing (in Chinese with English abstract). [5] Kautz, H., Schreiber, T., 1997. Nonliear time series analysis. Cambridge University Press, Cambridge. [6] Kim, H. S., Eykholt, R., Salas, J. D., 1999. Nonlinear dynamic, delay times, and embedding windows. Physica D, 127: 48-60. doi: 10.1016/S0167-2789(98)00240-1 [7] Liu, B. Z., Pen, J. H., 2004. Nonlinear dynamic mechanics. Higher Education Press, Beijing (in Chinese). [8] Lopez-Ruiz, R., Manclni, H. L., Calet, X. A., 1995. A statistical measure of complexity. Phys. Lett. , 209(5-6) 321-326. doi: 10.1016/0375-9601(95)00867-5 [9] Lü, J. H., Chen, J. A., Chen, S. H., 2002. Chaotic time sequence analysis and application. Wuhan University Press, Wuhan (in Chinese). [10] Pincus, S. M., 1995. Approximate entropy (ApEn) as a complexity measure. Chaos, 5(1): 110-117. doi: 10.1063/1.166092 [11] Provenzale, A., Smith, L. A., Vio, R., et al., 1994. Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D, 58: 31-49. [12] Qin, S. Q., Jiao, J. J., Wang, S. J., et al., 2001. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process. International Journal of Solids and Structures, 38: 8093-8109. doi: 10.1016/S0020-7683(01)00060-9 [13] Takens, F., 1981. Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. Lecture Notes in Mathematics, 898: 366-381. [14] Theiler, J., 1986. Spurious dimension from correlation algorithms applied to limited time series data. Phys. Rev. A, 34(3): 2427-2432. doi: 10.1103/PhysRevA.34.2427 [15] Wolf, A., Swift, J. B., Swinney, H. L., et al., 1985. Determining Lyapunov exponents froma time series. Physica D, 16(3): 285-317. doi: 10.1016/0167-2789(85)90011-9 [16] Yu, C. W., 2002. Complexity of geosystems: Basic issues of geological science (Ⅰ). Earth Science-Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205005.htm [17] Zhou, C. Y., 2000. Nonlinear features and prognosis of landslides, landslides in research, theory and practice. Thomas Telford, London, 1(1): 267-272. [18] 成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学学报, 31(3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm [19] 黄润秋, 许强, 1996. 非线性理论在工程地质中的应用. 中国科学基金, 2: 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ199602000.htm [20] 黄胜伟, 2002. 工程结构混沌振动、混沌最优化算法及其应用[博士论文]. 南京: 河海大学. [21] 刘秉正, 彭建华, 2004. 非线性动力学. 北京: 高等教育出版社. [22] 吕金虎, 陈君安, 陈士华, 2002. 混沌时间序列分析及其应用. 武汉: 武汉大学出版. [23] 於崇文, 2002. 地质系统的复杂性——地质科学的基本问题(Ⅰ). 地球科学——中国地质大学学报, 27(5): 509-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205005.htm