Elemental Occurrence Phases of the New-Type Ferromanganese Crusts from the East Philippine Sea
-
摘要: 为了解东菲律宾海新型铁锰结壳中元素的赋存状态, 采用化学提取方法对3个结壳样品进行了物相分析.不同类型结壳中成矿和稀土元素的赋存状态总体一致, 表明它们形成于相近的地质和海洋环境中.成矿元素中的Fe和Cu绝大部分赋存在残渣态中, Mn、Co和Ni则主要赋存在锰氧化物结合态、有机结合态和残渣态中, 并且埋藏型结壳样品锰氧化物结合态中赋存了相对更高比例的成矿元素.三价稀土元素主要集中在锰氧化物结合态中.两个沉积物表层结壳样品中的Ce主要集中在残渣态中.而埋藏型结壳样品中的Ce则主要赋存在锰氧化物结合态中, 这可能与该样品此相态中赋存了相对较多的Mn有关.呈碳酸盐结合态和有机结合态的稀土元素含量仅各占稀土总量的1%左右, 表明两者对结壳中稀土元素的富集作用很小.Abstract: To understand the elemental occurrence phases in the new-type ferromanganese crusts from the East Philippine Sea, chemical extraction method has been utilized to analyze the occurrence phases in three crusts.The occurrence phases of metallic elements and rare earth element (REE) in different types of crusts are coherent as a whole, indicating that they were formed in similar geologic and oceanic conditions.Among the metallic elements, Fe and Cu mainly concentrate in the residual phase, while Mn, Co and Ni mainly concentrate in the manganese oxide phase, organic phase and residual phase.Besides, the manganese oxide phase of the buried crust has higher metallic element proportion.The trivalent REEs mainly concentrate in the manganese oxide phase.Ce mainly concentrates in the residual phase of two crusts on the sediment surface.While Ce mostly concentrates in the manganese oxide phase of the buried crust, which perhaps is associated with the higher Mn content in its manganese oxide phase.The REE contents in the carbonate phase and organic phase are only about 1% of the total REE respectively, which indicates that they have little impact on the enrichment of REE in the crusts.
-
表 1 新型铁锰结壳样品特征
Table 1. Characteristics of the new-type ferromanganese crusts
表 2 新型铁锰结壳中不同赋存状态Fe、Mn、Cu、Co和Ni测试结果(%)
Table 2. Analysis results of Fe, Mn, Cu, Co and Ni in different phase of the new-type ferromanganese crusts
表 3 新型铁锰结壳中不同赋存状态稀土元素测试结果(%)
Table 3. Analysis results of REE in different phases of the new-type ferromanganese crusts
-
[1] Bai, Z. M., Wang, Y. B., Jiang, B., et al., 2004. Occurrence modes of REE in the Pacific cobaltrich crusts. Earth Science Frontiers, 11 (2): 387-392 (in Chinese with English abstract). [2] Banakar, V. K., Galy, A., Sukumaran, N. P., et al., 2003. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth and Planetary Science Letters, 205: 337-348. doi: 10.1016/S0012-821X(02)01062-2 [3] Byrne, R. H., Sholkovitz, E. R., 1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneidner, K. A., Eyring, L., eds., Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, 23: 497-593. [4] Chu, F. Y., Sun, G. S., Li, X. M., et al., 2005. The growth habit and controlling factors of the cobalt-rich crusts in seamount of the Central Pacific. Journal of Jilin University (Earth Science Edition), 35 (3): 320-325 (in Chinese with English abstract). [5] De Carlo, E. H., Mc Murtry, G. M., 1992. Rare earth element geochemistry of ferromanganese deposits from the Hawaiian Archipelago. Chemical Geology, 95: 235-250. doi: 10.1016/0009-2541(92)90014-V [6] Deng, D. W., 2004. The study of phases-analysis and its applications of multimetallic nodules and crusts [Dissertation]. Changchun University, Changchun (in Chinese). [7] Fu, Y. Z., Peng, J. T., Hu, R. Z., et al., 2005. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chinese Science Bulletin, 50 (18): 2106-2112. doi: 10.1360/982004-348 [8] German, C. R., Elderfield, H., 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833. doi: 10.1029/PA005i005p00823 [9] Greaves, M. J., Elderfield, H., Sholkovitz, E. R., 1999. Aeolian sources of rare earth elements to the Western Pacific Ocean. Marine Chemistry, 68: 31-38. doi: 10.1016/S0304-4203(99)00063-8 [10] He, G. W., Zhao, Z. B., Zhu, K. C., et al., 2001. Cobalt-rich crust resources in the West Pacific. Geological Publishing House, Beijing, 55-56 (in Chinese). [11] Huang, Y. Y., Yang, H. N., Kuang, Y. Q., et al., 1997. Controlling of the formation and distribution for polymetallic nodules by the seafloor sediment type and its geochemical environment. China University of Geosciences Press, Wuhan (in Chinese). [12] Koschinsky, A., Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimicaet Cosmochimica Acta, 59: 5113-5132. doi: 10.1016/0016-7037(95)00358-4 [13] Kroenke, L., Scott, R. B., Brassell, S., et al., 1981. Site 450: East side of the Parece Vela basin. In: Kroenke, L., Scott, R. B., Brassell, S., et al., eds., Initial reports of the deep-sea drilling project, Vol. 59. U. S. Government Printing Office, Washington, 355-373. [14] Li, R. H., Cheng, Z. B., 2004. Isotopic dating of oceanic ferromanganese crusts: Main methods and recent development. Marine Geology Letters, 20 (10): 14-18 (in Chinese with English abstract). [15] Liang, H. F., Xu, D. Y., Lin, Z. H., et al., 1994. Element geochemistry of hydrogenic ferromanganese crusts from some areas in the Pacific Ocean. In: Xu, D. Y., Yao, D., Liang, H. F., et al., eds., Formative paleoceanographic conditions of the polymetallic nodules. Geological Publishing House, Beijing, 22-41 (in Chinese). [16] Ling, H. F., Jiang, S. Y., Frank, M., et al., 2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth and Planetary Science Letters, 232: 345-361. doi: 10.1016/j.epsl.2004.12.009 [17] Liu, Y. J., Cao, L. M., 1987. General element geochemistry. Geological Publishing House, Beijing, 57-80 (in Chinese). [18] Manheim, F. T., 1986. Marine cobalt resources. Science, 232: 600-608. doi: 10.1126/science.232.4750.600 [19] Piper, D. Z., 1974. Rare earth elements in the sedimentary cycle: Asummary. Chemical Geology, 14: 285-304. doi: 10.1016/0009-2541(74)90066-7 [20] Ujiie, H., 1975. Planktonic foraminiferal biostratigraphy in the Western Philippine Sea, Leg 31 of DSDP. In: Karig, D. E., Ingle, J. C. Jr., et al., eds., Initial reports of the deep sea drilling Project, 31. Washington, U. S. A., 677-691. [21] Wang, Z. G., Yu, X. Y., Zhao, Z. H., et al., 1989. Rare earth elements geochemistry. Science Press, Beijing (in Chinese). [22] Wen, X., De Carlo, E. H., Li, Y. H., 1997. Interelement relationships inferromanganese crusts from the Central Pacific Ocean: Their implications for crust genesis. Marine Geology, 136: 277-297. doi: 10.1016/S0025-3227(96)00064-3 [23] Wu, G. H., Zhou, H. Y., Chen, H. L., 2001. Progress in the research of cobalt-rich crusts. Geological Journal of China Universities, 7 (4): 379-389 (in Chinese with English abstract). [24] Xu, Z. K., Li, A. C., Jiang, F. Q., et al., 2006a. Paleoenvironments recorded in a new-type ferromanganese crust from the East Philippine Sea. Earth Science—Journal of China University of Geosciences, 31 (3): 301-308 (in Chinese with English abstract). [25] Xu, Z. K., Li, A. C., Jiang, F. Q., et al., 2006b. Characteristics and origin of the new-type ferromanganese crusts from deepwater areas of the East Philippine Sea. Marine Geology & Quaternary Geology, 26 (4): 91-98 (in Chinese with English abstract). [26] Yang, S. Y., Li, C. X., 1999. Research progress in REE tracer for sediment source. Advances in Earth Science, 14 (2): 164-167 (in Chinese with English abstract). [27] Zhao, G. T., Peng, J., Tian, L. Y., et al., 2004. Geochemistry of ferromanganese crusts and the tracing of paleocean environment. Periodical of Ocean University of China, 34 (5): 886-892 (in Chinese with English abstract). [28] Zhao, H. Q., 2003. Rare earth elements geochemistry in Corich crust. Donghai Marine Science, 21 (1): 19-26 (in Chinese with English abstract). [29] Zheng, L. G., Liu, G. J., Qi, C. C., et al., 2007. Study on modes of occurrence of mercuryin coals from the Huaibei coalfield. Earth Science—Journal of China University of Geosciences, 32 (2): 279-284 (in Chinese with English abstract). [30] 白志民, 王英滨, 姜波, 等, 2004. 太平洋富钴结壳中稀土元素的赋存状态. 地学前缘, 11 (2): 387-392. doi: 10.3321/j.issn:1005-2321.2004.02.008 [31] 初凤友, 孙国胜, 李晓敏, 等, 2005. 中太平洋海山富钴结壳生长习性及控制因素. 吉林大学学报(地球科学版), 35 (3): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200503007.htm [32] 邓大为, 2004. 多金属结核和结壳的相态分析研究及其应用. 硕士学位论文. 长春: 吉林大学. [33] 何高文, 赵祖斌, 朱克超, 等, 2001. 西太平洋富钴结壳资源. 北京: 地质出版社, 55-56. [34] 黄永样, 杨慧宁, 匡耀求, 等, 1997. 海底沉积物类型及其地球化学环境对多金属结核形成与分布的控制作用. 武汉: 中国地质大学出版社. [35] 李日辉, 程振波, 2004. 大洋铁锰结壳测年的几种常用的同位素方法: 成果与问题. 海洋地质动态, 20 (10): 14-18. doi: 10.3969/j.issn.1009-2722.2004.10.004 [36] 梁宏锋, 许东禹, 林振宏, 等, 1994. 太平洋几个不同海区水成铁锰结壳元素地球化学研究. 见: 许东禹, 姚德, 梁宏锋, 等编, 多金属结核形成的古海洋环境. 北京: 地质出版社, 22-41. [37] 刘英俊, 曹励明, 1987. 元素地球化学导论. 北京: 地质出版社, 57-80. [38] 王中刚, 于学元, 赵振华, 等, 1989. 稀土元素地球化学. 北京: 科学出版社. [39] 武光海, 周怀阳, 陈汉林, 2001. 大洋富钴结壳研究现状与进展. 高校地质学报, 7 (4): 379-389. doi: 10.3969/j.issn.1006-7493.2001.04.002 [40] 徐兆凯, 李安春, 蒋富清, 等, 2006a. 东菲律宾海新型富铁锰结壳的古海洋环境记录. 地球科学——中国地质大学学报, 31 (3): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603002.htm [41] 徐兆凯, 李安春, 蒋富清, 等, 2006b. 东菲律宾海深水区新型铁锰结壳的特征和成因. 海洋地质与第四纪地质, 26 (4): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200604018.htm [42] 杨守业, 李从先, 1999. REE示踪沉积物物源研究进展. 地球科学进展, 14 (2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010 [43] 赵广涛, 彭俊, 田丽艳, 等, 2004. 大洋铁锰结壳的地球化学与古海洋环境示踪. 中国海洋大学学报, 34 (5): 886-892. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200405033.htm [44] 赵宏樵, 2003. 中太平洋富钴结壳稀土元素的地球化学特征. 东海海洋, 21 (1): 19-26. doi: 10.3969/j.issn.1001-909X.2003.01.004 [45] 郑刘根, 刘桂建, 齐翠翠, 等, 2007. 淮北煤田煤中汞的赋存状态. 地球科学——中国地质大学学报, 32 (2): 279-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702018.htm