Sedimentary Patterns and Structural Control across Toe Thrust Belts, Niger Delta
-
摘要: 研究尼日尔三角洲深水坡脚逆冲带沉积样式、构造对沉积的控制可以揭示深水沉积分布与演化特征.运用生长地层翼旋转机理和地震相分析技术对研究区的沉积类型、构造与沉积关系进行了分析.认为在深水陆坡重力滑动作用所形成的微盆地内, 层序边界表现为微盆地边缘上超不整合面或重力流对下伏地层的侵蚀不整合; 逆冲构造隆升速率与沉积速率共同控制了重力流可容空间和沉积充填样式; 沉积垂向演化以块状搬运复合体-浊积扇-深海披覆泥或浊积扇-深海披覆泥为特征.在充分考虑构造隆升和沉积速率影响因素的基础上, 建立了单一微盆地和多个微盆地的沉积演化模式.Abstract: Researches on sedimentary patterns and structural control across toe thrust belts can demonstrate the distribution and evolution of deep-water sediments. In this paper, mechanism of limb rotation in growth strata and technique of seismic facies analysis are used. There are three features in the minibasins induced by gravitational sliding on the slope: the firstly, feature is surface of unconformity developed by onlap on minibasin margins or surface of unconformity truncated by mass-transport-complex are sequence boundary in the study area; the secondly, accommodation of gravity flow is controlled by uplift rate and sedimentation rate, and styles of filling in the minibasins are dominated by the interrelationship between the two factors; and the third, there are two stacking patterns that consists of upward of turbidite fan-hemipelagic drape mud or mass-transport complexes-turbidite fan-hemipelagic drape mud. Models showing evolution of sediment in Single minibasin and in multiple minibasins are built based on the study of uplift and rate of deposition.
-
Key words:
- Niger Delta /
- toe thrust belts /
- growth strata /
- structural control /
- seismic facies
-
图 1 尼日尔三角洲主要构造特征示意图(据Corredor et al., 2005,修改)
Fig. 1. Sketch map of the Niger Delta region showing the main tectonic features (modified after Corredor et al., 2005)
-
[1] Adeogba, A. A., McHargue, T. R., Graham, S. A., 2005. Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope. AAPG Bulletin, 89 (5): 627-643. doi: 10.1306/11200404025 [2] Badalini, G., Kneller, B., Winker, C. D., 2000. Architecture and processes in the Late Pleistocene Brazos-Trinity turbidite system, Gulf of Mexico continental slope. In: Wei mer, P., Slatt, R. M., Coleman, J., et al., eds., Deep-water reservoirs of the world: Gulf Coast Section SEPM 20th Annual Research Conference, 16-34. [3] Beaubouef, R. T., Friedmann, S. J., 2000. High-resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: Depositional models and reservoir analogues. In: Wei mer, P., Slatt, R. M., Coleman, J., et al., eds., Deep-water reservoirs of the world: Gulf Coast SEPM Section 20th Annual Research Conference, 40-60. [4] Beaubouef, R. T., Abreu, V., Van Wagoner, J. C., 2003. Basin 4 of the Brazos-Trinity slope system, western Gulf of Mexico: The terminal portion of a Late Pleistocene low stand system tract. In: Roberts, H. H., Rosen, N. C., Fillon, R. H., et al., eds., Shelf margin deltas and linked down slope petroleum systems: Global significance and future exploration potential. Proceedings of the 23rd Annual Research Conference, Gulf Coast Section SEPM Foundation, 45-57. [5] Burbank, D., Meigs, A., Brozovic, N., 1996. Interactions of growing folds and coeval depositional systems. BasinResearch, 8 (3): 199-223. [6] Coleman, J. M., Prior, D. B., Lindsay, J. F., 1983. Deltaic influences on shelfedge instability processes. In: Stanley, D. J., Moore, G. T., eds., The shelf break: Critical interface on continental margins. SEPM Special Publication, 33: 121-137. [7] Corredor, F., Shaw, J. H., Bilotti, F., 2005. Structural styles in the deep water fold and thrust belts of the Niger Delta. AAPG Bulletin, 89 (6): 753-780. doi: 10.1306/02170504074 [8] Cronin, B., Owen, D., Hartley, A., et al., 1998. Slumps, debris flows and sandy deep-water channel systems: I mplications for the application of sequence stratigraphy to deep water clastic sediments. Journal ofthe Geological Society, 155: 429-432. doi: 10.1144/gsjgs.155.3.0429 [9] Dam, G., Sonderhol m, M., 1994. Lowstand slope channels of the itilli succession (Maastrichtian-lower Paleocene), Nuussuaq, West Greenland. Sedimentary Geology, 94 (1-2): 49-71. doi: 10.1016/0037-0738(94)90146-5 [10] Davies, R. J., 2003. Kilometer-scale fluidization structures formed during early burial of a deep-water slope channel on the Niger Delta. Geology, 31 (11): 949-952. doi: 10.1130/G19835.1 [11] Deptuck, M. E., Steffens, G. S., Barton, M., et al., 2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20 (6-8): 649-676. doi: 10.1016/j.marpetgeo.2003.01.004 [12] Doust, H., Omatsola, E., 1990. Niger Delta. In: Edwards, J. D., Santogrossi, P. A., eds., Divergent/Passive margins basins, AAPG Memoir, 48: 201-238. [13] Fonnesu, F., 2003. 3-D seismic images of a low-sinuosity slope channel and-related depositional lobe (West Africa deep offshore). Marine and Petroleum Geology, 20: 615-629. doi: 10.1016/j.marpetgeo.2003.03.006 [14] Gervais, A., Savoye, B., Mulder, T., et al., 2005. Sandy modern turbidite lobes: A newinsight from high resolution seismic data. Marine and Petroleum Geology, 23 (4): 485-502. [15] Kolla, V., Macurda, D. B. Jr., 1988. Sea-level changes and timing of turbidity-current events in deep-sea fan systems. In: Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., et al., eds., Sea level change: An integrated approach. SEPM Special Publication, 42: 381-392. [16] Li, Z., 2006. From the highest to the deepest: A review on research frontiers of sedimentology reflected from 17th international sedimentological congress. Acta Sedimen-tologica Sinica, 24 (6): 928-933 (in Chinese with English abstract). [17] Mallarino, G., Beaubouef, R. T., Droxler, A. W., et al., 2006. Sea level influence on the nature and timing of aminibasin sedimentary fill (northwestern slope of the Gulf of Mexico). AAPG Bulletin, 90 (7): 1089-1119. doi: 10.1306/02210605058 [18] Mayall, M., Jones, E., Casey, M., 2006. Turbidite channel reservoirs-key elements in facies prediction and effective development. Marine and Petroleum Geology, 23 (8): 821-841. doi: 10.1016/j.marpetgeo.2006.08.001 [19] Moscardelli, L., Wood, L., Mann, P., 2006. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90 (7): 1059-1088. doi: 10.1306/02210605052 [20] Posamentier, H. W., Erskine, R. D., 1991. Seismic expression and recognition criteria of ancient submarine fans. In: Wei mer, P., Link, M. H., eds., Seismic facies and sedimentary processes of submarine fans and turbidite systems. Springer-Verlag, New York, 197-222. [21] Posamentier, H. W., Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73: 367-388. doi: 10.1306/111302730367 [22] Prather, B. E., Booth, J. R., Steffens, G. S., et al., 1998. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deepwater Gulf of Mexico. AAPG Bulletin, 82 (5A): 701-728. [23] Satterfield, W. M., Behrens, E. W., 1990. Alater Quaternary canyon/channel system, northwest Gulf of Mexico continental slope. Marine Geology, 92 (1-2): 51-67. doi: 10.1016/0025-3227(90)90026-G [24] Shannon, P. M., Stoker, M. S., Praeg, D., et al., 2005. Sequence stratigraphic analysis in deep-water, underfilled NW European passive margin basins. Marine and Petroleum Geology, 22 (9-10): 1185-1200. doi: 10.1016/j.marpetgeo.2005.03.013 [25] Shaw, J. H., Novoa, E., Connors, C. D., 2004. Structural controls on growth stratigraphy in contractional faultrelated folds. In: McClay, K. R., ed., Thrust tectonics and hydrocarbon systems. AAPG Memoir, 82: 400-412. [26] Shaw, J. H., Hook, S. C., Suppe, J., 2005. Pitas point anticline, California, U. S. A. . In: Shaw, J. H., Connors, C., Suppe, J., eds., Seismic interpretation of contractional fault-related folds: An AAPG seismic atlas. American Association of Petroleum Geologists Studies in Geology, 53, 60-61. [27] Suppe, J., Chou, G. T., Hook, S. C., 1992. Rates of folding and faulting determined from growth strata. In: McClay, K. R., ed., Thrust tectonics. Chapman & Hall, London, 105-121. [28] Wang, C. W., Chen, H. H., Chen, C. M., et al., 2007. Characteristics of the Baiyun deep-water fan and main accumulation controlling factors in Pearl River Mouth basin, South China Sea. Earth Science—Journal of China University of Geosciences, 32 (2): 247-252 (in Chinese with English abstract). [29] Weimer, P., Varnai, P., Budhijanto, F. M., et al., 1998. Sequence stratigraphy of Pliocene and Pleistocene turbidite systems, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82 (5B): 918-960. [30] Winker, C. D., 1996. High-resolution seismic stratigraphy of a late Pleistocene submarine fan ponded by salt-withdrawal minibasins on the Gulf of Mexico continental slope: 28th Annual offshore technology conference proceedings, offshore technology conference, Richardson, Texas, 1, OTC 8024: 619-662. [31] Zhong, G. F., Liu, X. F., Deng, C. N., et al., 2006. Middle-Upper Ordovician seismic sequences and submarine fan deposits in west tadong uplift, Tarim basin, northwest China. Earth Science—Journal of China University of Geosciences, 31 (3): 366-371 (in Chinese with English abstract). [32] 李忠, 2006. "从最高到最深"—从第17届国际沉积学大会看沉积学研究前沿. 沉积学报, 24 (6): 928-933. doi: 10.3969/j.issn.1000-0550.2006.06.022 [33] 王存武, 陈红汉, 陈长民, 等, 2007. 珠江口盆地白云深水扇特征及油气成藏主控因素. 地球科学——中国地质大学学报, 32 (2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702013.htm [34] 钟广法, 刘学锋, 邓常念, 等, 2006. 塔里木盆地塔东凸起西部中上奥陶统地震层序与海底扇沉积. 地球科学——中国地质大学学报, 31 (3): 366-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603012.htm