Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios
-
摘要: 温室气体浓度增加(以CO2为主) 引起的温盐环流演变在未来气候系统中扮演非常重要的角色.在最新的温室气体排放情景下, 利用基于德国马普气象研究所为IPCC第四次评估报告而最新发展的气候模式(ECHAM5/MPIOM), 对3种不同的温室气体排放假设(B1, A1B, A2) 进行了可靠的数值模拟.在此基础上, 就大西洋温盐环流和北大西洋深层水形成的变化, 以及北大西洋不同海区的温盐环流对温室气体浓度增加的响应, 对模拟结果进行了分析.研究揭示, 到21世纪末, 在3种CO2排放情景下, 温盐环流强度分别减弱了4 Sv (1 Sv=106 m3/s)、5.1 Sv、5.2 Sv, 大体相当于减弱了20%、25%、25.1%.由于全球变暖引起副极地海区表层海水变暖变淡, 拉不拉多海(Labrador Sea)和丹麦海峡(Denmark Strait)以南区域的深层对流有所减弱.而在格陵兰-冰岛-挪威海(GINS ea)的情况相反, 由于北大西洋暖流的增强, 通过法鲁海峡(Faro-Bank Channel)进入GIN海域的高盐水增加, 导致GIN海域上层盐度(密度)增加, 进而深层对流加强.在A1B情景下, 由于全球变暖北大西洋的深层水生成率从16.2 Sv降到了12.9 Sv.Abstract: Changes in the thermohaline circulation (THC) arising from the increase in the CO2 concentration in the atmosphere will dominate the future climate regimes. In this paper, a new climate model developed at Max-Planck Institute for Meteorology is targeted at the variation of THC strength, the changes in North Atlantic deep water (NADW) formation and the regional responses of the THC in the North Atlantic to the increasing atmospheric CO2. From 2000 to 2100, the increase in CO2 (B1, A1B and A2) will have decreased the strength of THC by 4 Sv, 5.1 Sv and 5.2 Sv, respectively, or equivalently, reduced by 20%, 25% and 25.1% of the present THC strength. This research indicates that oceanic deep convective activity is significantly strengthened in the Greenland-Iceland-Norway (GIN) Seas owing to saltier (denser) upper oceans, but is weakened both in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening derived from global warming. The saltiness of the GIN Seas is mainly initiated by the increase in the saline North Atlantic inflow through Faro-Bank (FB) Channel. Under the scenario A1B, the deep water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with a corresponding increase in CO2.
-
Key words:
- thermohaline circulation (THC) /
- greenhouse gases /
- deepwater
-
-
[1] Broecker, W. S., 1991. The great ocean conveyor. Oceanography, 4: 79-89. doi: 10.5670/oceanog.1991.07 [2] Cheng, W., 2000. Climate variability in the North Atlantic on decadal and multi-decadal time scales: A numerical study (Ph. D. dissertation). University of Miami, Miami, 171. [3] Dai, A., Meehl, G. A., Washington, W. M., et al., 2001. Ensemble simulation of twenty-1st century climate changes: Business-as-usual versus CO2 stablization. Bull. Amer. Meteor. Soc. , 82: 2377-2388. doi: 10.1175/1520-0477(2001)082<2377:ESOTFC>2.3.CO;2 [4] Dai, A., Wigley, T. M. L., Boville, B. A., et al., 2001. Climates of the twentieth and twenty-1st centuries simulated by the NCARcli mate system model. J. Climate, 14: 485-519. doi: 10.1175/1520-0442(2001)014<0485:COTTAT>2.0.CO;2 [5] Del worth, T., Manabe, S., Stouffer, R. J., 1993. Interdecadal variations of the thermohaline circulation in a coupled ocean-at-mosphere model. J. Climate, 6: 1993-2011. doi: 10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2 [6] Houghton, J. T., Ding, Y., Griggs, D. J., et al., 2001. Interg-overnmental panel on climate change (IPCC), 2001: The scientific basis. Contribution of working group Ⅰ to the third assessment report of the IPCC. Cambridge University Press, Cambridge. [7] Manabe, S., Stouffer, R. J., 1994. Multicentury response of a coupled ocean-at mosphere model to an increase of at-mospheric carbon dioxide. J. Climate, 7: 5-23. doi: 10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2 [8] Marotzke, J., 2000. Abrupt climate change and thermohaline circulation: Mechanisms and predictablity. Proceedings of the National Academy of Sciences (U. S. A.), 97: 1347-1350. doi: 10.1073/pnas.97.4.1347 [9] Marsland, S. J., 2003. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordi-nates. Ocean Modelling, 5: 91-127. doi: 10.1016/S1463-5003(02)00015-X [10] Mauritzen, C., 1996a. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scoland Ridge. Part 1: Evidence for a revised circulatio scheme. Deep-Sea Research Ⅰ, 43: 769-806. doi: 10.1016/0967-0637(96)00037-4 [11] Mauritzen, C., 1996b. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scot-land Ridge. Part 2: An inverse model. Deep-Sea Research Ⅰ, 43: 807-835. doi: 10.1016/0967-0637(96)00038-6 [12] Roeckner, E., 2003. The atmospheric general circulation model ECHAM5, part Ⅰ: Model description. Max-Planck-Institut für Meteorologie, Report No. 349, 127. [13] Voss, R., Mikolajewicz, U., 2001. Long term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG. Climate Dyn. , 17: 45-60. doi: 10.1007/PL00007925