Major Factors Controlling Formation of Large and Intermediate Gas Fields with High Gas Accumulation Efficiency in Different Types of Basins in China
-
摘要: 利用天然气地质储量、含气面积和成藏时期, 定义和求取了气藏天然气聚集效率.通过我国60余个大中型气田天然气聚集效率的计算, 将其分为高效、中效和低效3种类型.通过天然气聚集效率与各种成藏条件叠合研究得到, 我国不同类型盆地高效大中型气田形成主要受源岩供气能力、输导层输导能力和天然气封盖保存能力的控制.要形成高效大中型气田, 源岩生气强度前陆盆地一般应大于80×108 m3/km2·Ma, 克拉通盆地一般应大于26×108 m3/km2·Ma, 裂谷盆地应大于60×108 m3/km2·Ma.输导层输导天然气能力前陆盆地和裂谷盆地应大于5×10-14 m/Pa·s, 克拉通盆地一般应大于6×10-12m/Pa·s.盖层封盖能力CSI前陆盆地一般应大于1×1010 m/s, 克拉通盆地一般应大于5×109 m/s, 裂谷盆地一般应大于3×1010 m/s.天然气成藏期前陆盆地一般应晚于古近纪中期, 而克拉通和裂谷盆地均应晚于古近纪早期.Abstract: In this paper, gas accumulation efficiency was defined and calculated in terms of gas reserves, gas-bearing areas and accumulation periods. The calculation of gas accumulation efficiencies for about 60 large and intermediate gas fields in China concludes three types of large and intermediate gas fields with high, middle and low gas accumulation efficiencies. The comprehensive study of gas accumulation efficiency and different pooling conditions reveals that the formation of large and intermediate gas fields with high gas accumulation efficiency in different types of basins in China was controlled by gas supply of source rocks, gas transportation and gas seal and preservation. The creation of high gas accumulation intensity of source rocks in the large and intermediate gas fields is indispensable to the foreland basin often greater than 80×108 m3/km2·Ma, to the cratonic basin often greater than 26×108 m3/km2·Ma, and to the rift basin often greater than 60×108 m3/km2·Ma. The gas transportation velocity of transporting layer in the foreland and rift basins should often be greater than 5×10-14 m/Pa·s, that in the cratonic basin greater than 6×10-12 m/Pa·s. The comprehensive caprock seal index in the foreland basin should often be greater than 1×1010 m/s, that in the cratonic basin greater than 5×109 m/s, and that in the rift basin greater than 3×1010 m/s. The gas accumulation period in the foreland basin should often be later than the Middle Eogene, and that in the cratonic and rift basins later than the Early Eogene.
-
表 1 我国大中型气田天然气聚集效率及其主控因素特征
Table 1. Characteristics of gas accumulation efficiency and its main controlling factors of big and middle gas fields in China
-
[1] Bao, C., 1998. Gas geology. Science Press, Beijing, 237 (in Chinese). [2] Dai, J. X., Chen, J. F., Zhong, N. N., et al., 2003. Characteristics of large and medium gas fields and correlation with their source rocks in China. Petroleum Industry Press, Beijing (in Chinese). [3] Dai, J. X., Wang, T. B., Song, Y., et al., 1997. The formation conditions and distribution laws of large and mediumgas fields in China. Petroleum Industry Press, Beijing, 184-197 (in Chinese). [4] Hao, S. S., Huang, Z. L., Gao, Y. B., 1991. A study of the diffusion of light hydrocarbon and the dynamic equilibrium principle in the migration and accumulation of natural gas. Acta Petrolei Sinica, 12 (3): 17-24 (in Chinese with English abstract). [5] Hao, S. S., Liu, G. D., Huang, Z. L., 1993. The dynamic balance model of migration and accumulation in evaluation of gas reserves. Petroleum Exploration and Development, 20 (3): 16-21 (in Chinese with English abstract). [6] Kang, Z. L., Fu, C. D., Cui, S. F., et al., 2000. Generality of Chinese large and medium gas fields. Petroleum Industry Press, Beijing (in Chinese). [7] Li, J., 2000. The characteristics of gas source rock and reserves abundance of important hydrocarbon-bearing basins in China. China University of Mining & Technology Press, Xuzhou (in Chinese). [8] Liu, G. D., Li, J., Li, J. M., et al., 2005. The controls and the assessment method for the effectiveness of natural gas migration and accumulation process. Natural Gas Geoscience, 16 (1): 1-6 (in Chinese with English abstract). [9] Lu, S. F., Fu, G., Wang, P. Y., 2002. Quantitative researchon main controlling factors of gas accumulation. Petroleum Industry Press, Beijing, 1-13 (in Chinese). [10] Men, X. Y., 2002. The research method for formation period of oilgas reservoirs and its application. Gas Exploration and Development, 23 (4): 10-17 (in Chinese with English abstract). [11] Wan, X. L., Qiu, N. S., Zhang, S. W., 2004. The change process of oilgas accumulation of lithological oilgas reservoirs in Dongying depression. Oil and Gas Geology, 25 (4): 449-451 (in Chinese with English abstract). [12] Wang, F. Y., Hao, S. S., Lei, J. J., 1998. The isotopic dating of authigenic illite and timing of hydrocarbon fluid emplacement in sandstone reservoir. Acta Petrolei Sinica, 19 (2): 40-43 (in Chinese with English abstract). [13] Wang, L. Z., Dai, T. M., Peng, P. A., 2005. 40Ar/39Ar dating of diagenetic illites and its application in timing gas emplacemert in gas reservoirs. Earth Science—Journal of China University of Geosciences, 30 (1): 78-82 (in Chinese with English abstract). [14] Xin, R. C., Tian, C. Z., Dou, T. J., 2000. Study of oil-pool-forming chronology—Acase study on Daqing oil field. Earth Science Frontiers, 7 (3): 48-53 (in Chinese with English abstract). [15] Yang, W. Q., Jiang, Y. L., 2004. Analysis of hydrocarbon reservoir forming stages in the west of Huimin sag. PGRE, 11 (1): 20-23 (in Chinese). [16] Zhao, J. Z., 2002. Hydrocarbon inclusion analysis: Application in geochronological study of hydrocarbon accumulation. Geology Geochemistry, 30 (2): 83-87 (in Chinese with English abstract). [17] 包茨, 1998. 天然气地质学. 北京: 科学出版社, 237. [18] 戴金星, 陈践发, 钟宁宁, 等, 2003. 中国大气田及其气源. 北京: 石油工业出版社. [19] 戴金星, 王庭斌, 宋岩, 等, 1997. 中国大中型天然气田形成条件与分布规律. 北京: 石油工业出版社, 184-197. [20] 郝石生, 黄志龙, 高耀斌, 1991. 轻烃扩散系数研究及天然气运聚动平衡原理. 石油学报, 12 (3): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB199103002.htm [21] 郝石生, 柳广弟, 黄志龙, 1993. 天然气资源评价的运聚动平衡模型. 石油勘探与开发, 20 (3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199303002.htm [22] 康竹林, 傅诚德, 崔淑芬, 等, 2000. 中国大气田概念. 北京: 石油工业出版社. [23] 李剑, 2000. 中国重点含油气盆地气源岩特征与资源丰度. 徐州: 中国矿业大学出版社. [24] 柳广弟, 李剑, 李景明, 等, 2005. 天然气成藏过程有效性的主控因素与评价方法. 天然气地球科学, 16 (1): 1-6. doi: 10.3969/j.issn.1672-1926.2005.01.001 [25] 卢双舫, 付广, 王朋岩, 2002. 天然气富集主控因素的定量研究. 北京: 石油工业出版社, 1-13. [26] 门相勇, 2002. 油气藏形成时期研究方法及其应用. 天然气勘探与开发, 23 (4): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT200004001.htm [27] 万晓龙, 邱楠生, 张善文, 2004. 东营凹陷岩性油气藏动态成藏过程. 石油与天然气地质, 25 (4): 449-451. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200404020.htm [28] 王飞宇, 郝石生, 雷加锦, 1998. 砂岩储层中自生伊利石定年分析油气藏形成期. 石油学报, 19 (2): 40-43. doi: 10.3321/j.issn:0253-2697.1998.02.008 [29] 王龙樟, 戴橦谟, 彭平安, 2005. 自生伊利石40Ar/39Ar法定年技术及气藏成藏期的确定. 地球科学——中国地质大学学报, 30 (1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501010.htm [30] 辛仁臣, 田春志, 窦同君, 2000. 油藏成藏年代学分析. 地学前缘, 7 (3): 48-53. doi: 10.3321/j.issn:1005-2321.2000.03.005 [31] 杨万芹, 蒋有录, 2004. 惠民凹陷西部油气成藏期分析. 油气地质与采收率, 11 (1): 20-23. doi: 10.3969/j.issn.1009-9603.2004.01.007 [32] 赵靖舟, 2002. 油气包裹体在成藏年代学研究中的应用实例分析. 地质地球化学, 30 (2): 83-87. doi: 10.3969/j.issn.1672-9250.2002.02.015