• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原新生代火山活动的深部力学背景

    熊熊 王继业 滕吉文

    熊熊, 王继业, 滕吉文, 2007. 青藏高原新生代火山活动的深部力学背景. 地球科学, 32(1): 1-6.
    引用本文: 熊熊, 王继业, 滕吉文, 2007. 青藏高原新生代火山活动的深部力学背景. 地球科学, 32(1): 1-6.
    XIONG Xiong, WANG Ji-ye, TENG Ji-wen, 2007. Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau. Earth Science, 32(1): 1-6.
    Citation: XIONG Xiong, WANG Ji-ye, TENG Ji-wen, 2007. Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau. Earth Science, 32(1): 1-6.

    青藏高原新生代火山活动的深部力学背景

    基金项目: 

    国家自然科学基金项目 40274037

    国家自然科学基金项目 40474028

    中国科学院创新方向基金项目 KZCX3-SW-153

    详细信息
      作者简介:

      熊熊(1965一),男,理学博士,研究员,主要从事地球动力学研究.E-mail:xxiong@asch.whigg.ac.cn

    • 中图分类号: P317

    Deep Mechanical Background for the Cenozoic Volcanism in the Tibetan Plateau

    • 摘要: 为了研究火山形成基本要素——岩浆运移通道的形成, 基于重力异常反演的青藏高原下地壳底部的地幔对流应力场, 结合地壳破裂形成机理和对流应力场与青藏高原新生代火山分布的关系, 以及青藏高原下地幔对流演化的数值模拟结果, 分析了高原火山岩浆运移通道产生的深部力学机制.研究表明, 高原下地幔对流应力场存在两个大的拉张区, 高原中部和北部的火山岩均分布于拉张应力区.南部的林子宗火山区对应了印度板块与欧亚大陆碰撞前或碰撞早期高原下的地幔上升流.对流应力的量级为~100Ma, 这与导致地壳破裂的应力量级相当.所有这些证据表明, 青藏高原下地幔对流应力场可能是导致高原地壳破裂, 并发展为岩浆物质通道的主要力学机制之一.

       

    • 图  1  青藏高原地幔对流的地球物理学证据

      (灰度表示Pn波速度; 黑圆点表示火山岩分布)

      Fig.  1.  Geophysical evidence for mantle convection beneath the Tibetan Plateau

      图  2  青藏高原及邻区地幔对流应力场

      (黑圆点表示火山岩分布; A、B和D分别对应图 3a3b3d所示的拉张形态)

      Fig.  2.  Mantle convection-generated stress field beneath the Tibetan Plateau and its adjacent areas

      图  3  应力场与地壳张性破裂的4种形式

      Fig.  3.  Four types of stress field and crustal tensional fracture

    • [1] Anderson, O. L., Grew, P. C., 1977. Stress corrosion theoryof crack propagation with applications to geophysics. Rev. Geophys. Space Phys. , 15 (1): 77-104. doi: 10.1029/RG015i001p00077
      [2] Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The high K2O volcanismof northwestern Tibet: Geochemistry and tectonic implications. Earth Planet. Sci. Lett. , 111: 351-367. doi: 10.1016/0012-821X(92)90189-3
      [3] Curtis, A., Woodhouse, J. H., 1997. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and surrounding regions frominterevent surface wave velocity inversion. J. Geophys. Res. , 102 (B6): 11789-11813. doi: 10.1029/96JB03182
      [4] Deng, W. M., 1991. Geology geochemistry and age of shoshonitic lavas in the central Kunlun orogenic belt. Scientia Geologica Sinica, (3): 201-213 (in Chinese with English abstract).
      [5] Deng, W. M., Zheng, X. L., Matsumoto, Y., 1996. Petrological characteristics and ages of Cenozoic volcanic rocks from the Hoh Xil Mts., Qinghai Province. Acta Petrologica et Mineralogica, 15 (4): 289-297 (in Chinese with English abstract).
      [6] Ding, L., Kapp, P., Zhong, D. L., 2003. Cenozoic volcanism in Tibet: Evidence for a transition fromo ceanic to continental subduction. J. Petrology, 44 (10): 1833-1865. doi: 10.1093/petrology/egg061
      [7] Dricker, I. G., Roecker, S. W., 2002. Lateral heterogeneity in the upper mantle beneath the Tibetan Plateau and its surroundings from SS-S travel time residuals. J. Geophys. Res., 107 (B11): 2305, doi: 10.1029/2001JB000797.
      [8] Fu, R. S., Huang, J. H., Liu, W. Z., 1994. Correlation equation between regional gravity isostatic anomalies and small scale convection in the upper mantle. Chinese Journal of Geophysics, 37: 638-646 (in Chinese withEnglish abstract).
      [9] Fu, R. S., Huang, J. H., Wei, Z. X., 1996. The upper mantle flow beneth the North China platform. Pageoph. , 146 (4): 649-659.
      [10] Fu, R. S., Huang, J. H., Xiong, X., 1997. Evolution of the upper mantle flow under the Tibetan Plateau. In: Hsu, H. T., Ning, J. S., Wang, J. H., et al., eds., Proceedings of international symposium on current crustal movement and hazard reductionin East Asia and Southeast Asia. Seismological Press, Beijing, 405-417.
      [11] Fu, R. S., Huang, J. H., Xu, Y. M., 1998. Study of the mantle dynamics of the lithosphere movements in the region from Qinghai-Xizang Plateau to Tianshan Mountain. Chinese Journal of Geophysics, 41: 658-668 (in Chinese with English abstract).
      [12] Gao, R., Huang, D. D., Lu, D. Y., et al., 2000. Deep seismic reflection profile crossing western Kunlun-Tarim contacting belt. Chinese Science Bulletin, 45 (17): 1874-1879 (in Chinese). doi: 10.1360/csb2000-45-17-1874
      [13] Hong, H. J., Yu, Y., Zheng, X. Z., 2003. Global volcano distribution: Pattern and variation. Earth Science Frontiers, 10 (special issue): 11-16 (in Chinese with Eng-lish abstract).
      [14] Huang, P. H., Fu, R. S., 1983. Investigation on mantle convection pattern at thelithospheric bottomin China. Chinese Journal of Geophysics, 26 (1): 39-47 (in Chinese with English abstract).
      [15] Li, G. M., 2000. Petrological features and genesis of Cenozoic volcanic rocks, Qiangtang area, northern Tibetan Plateau. Geology Geochemistry, 28 (2): 38-44 (in Chinesewith English abstract).
      [16] Li, Q. S., Lu, D. Y., Gao, R., et al., 2000. Exploration seismic sounding crossing western Kunlun-Tarim contacting belt. Science in China (Series D), 30 (Suppl. ): 16-21 (in Chinese).
      [17] Liu, H. S., 1985. Geodynamical basis for crustal deformation under the Tibetan Plateau. Phys. Earth Planet. Inter. , 40: 43-60. doi: 10.1016/0031-9201(85)90004-4
      [18] Liu, S., Chi, X. G., Li, C., et al., 2001. Geochemistry and origin of the Cenozoic volcanic rocks series inthe northern Tibet. J. Changchun Univ. of Science and Technology, 31 (3): 230-234 (in Chinese with English abstract).
      [19] McKenna, L. W., Walker, J. D., 1990. Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet, and their implications for the formation of the Tibetan Plateau. J. Geophys. Res. , 95: 21483-21502. doi: 10.1029/JB095iB13p21483
      [20] McNamara, D. E., Walter, W. R., Owens, T. J., et al., 1997. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res. , 102 (B1): 493-505. doi: 10.1029/96JB02112
      [21] Molnar, P., 1988. Areviewof geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implication. Phil. Trans. R. Soc. Lond. , A326: 33-88.
      [22] Molnar, P., Burchfiel, B. C., Zhao, Z., et al., 1987. The geologic evolution of northern Tibet: Results of an expedition to Ulugh Muztagh. Science, 235: 299-305. doi: 10.1126/science.235.4786.299
      [23] Molnar, P., England, P., Mantinod, J., 1993. Mantle dynamics, uplift of Tibetan Plateau and the Indian monsoon. Rev. of Geophys., 37 (4): 357-396.
      [24] Owens, T. J., Zandt, G., 1997. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387: 37-43. doi: 10.1038/387037a0
      [25] Pan, G. T., Wang, P. S., Xu, Y. R., et al., 1990. Cenozoic tectonic evolution of the Tibetan Plateau. Geological Publishing House, Beijing, 32-70 (in Chinese).
      [26] Rittmann, A., 1962. Volcanoes and their activity. Wiley, New York, 305.
      [27] Runcorn, S. K., 1964. Satellite gravity measurements and laminar viscous flow model of the earth's mantle. J. Geophys. Res. , 69: 4389-4394. doi: 10.1029/JZ069i020p04389
      [28] Runcorn, S. K., 1967. Flowin the mantle inferred from the low degree harmonics of the geopotential. Geophys. J. R. Astr. Soc. , 14: 375-384.
      [29] Turner, S., Hawkesworth, C., Liu, J., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54. doi: 10.1038/364050a0
      [30] Xiong, X., Teng, J. W., 2002. Study on crustal movemenand deep process in eastern Qinghai-Xizang Plateau. Chinese Journal of Geophysics, 45 (4): 507-515.
      [31] Xu, Y., Liu, F. T., Liu, J. H., et al., 2002. Crust and upper mantle structure beneath western China from P wave travel time tomography. J. Geophys. Res. , 107 (B10): 2220, doi: 10.1029/2001JB000402.
      [32] 邓万明, 1991. 中昆仑造山带钾玄质火山岩地质、地球化学和时代. 地质科学, (3): 201-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199103000.htm
      [33] 邓万明, 郑锡澜, 松本征夫, 1996. 青海可可西里地区新生代火山岩的岩石特征与时代. 岩石矿物学杂志, 15 (4): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW604.000.htm
      [34] 傅容珊, 黄建华, 刘文忠, 1994. 区域重力异常和上地幔小尺度对流相关方程. 地球物理学报, 37: 638-646. doi: 10.3321/j.issn:0001-5733.1994.05.010
      [35] 傅容珊, 黄建华, 徐耀民, 等, 1998. 青藏高原-天山地区岩石层构造运动的地幔动力学机制. 地球物理学报, 41: 658-668. doi: 10.3321/j.issn:0001-5733.1998.05.009
      [36] 高锐, 黄东定, 卢德源, 等, 2000. 横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面. 科学通报, 45 (17): 1874-1879. doi: 10.3321/j.issn:0023-074X.2000.17.015
      [37] 洪汉净, 于泳, 郑秀珍, 等, 2003. 全球火山活动分布特征. 地学前缘, 10 (特刊): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1003.htm
      [38] 黄培华, 傅容珊, 1983. 中国岩石层底面地幔对流状态的探讨. 地球物理学报, 26 (1): 39-47. doi: 10.3321/j.issn:0001-5733.1983.01.005
      [39] 李光明, 2000. 藏北羌塘地区新生代火山岩岩石特征及其成因探讨. 地质地球化学, 28 (2): 38-44. doi: 10.3969/j.issn.1672-9250.2000.02.006
      [40] 李秋生, 卢德源, 高锐, 等, 2000. 横跨西昆仑-塔里木接触带的爆炸地震探测. 中国科学(D辑), 30 (增刊): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1002.htm
      [41] 刘桑, 迟效国, 李才, 等, 2001. 藏北新生代火山岩系列的地球化学及成因. 长春科技大学学报, 31 (3): 230-234. doi: 10.3969/j.issn.1671-5888.2001.03.006
      [42] 潘桂棠, 王培生, 徐耀荣, 等, 1990. 青藏高原新生代构造演化. 北京: 地质出版社, 32-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304003.htm
    • 加载中
    图(3)
    计量
    • 文章访问数:  3782
    • HTML全文浏览量:  133
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2006-03-28
    • 刊出日期:  2007-01-25

    目录

      /

      返回文章
      返回