Responses of Groundwater Recharge and Pumpage to Change in Precipitation in Hebei Plain
-
摘要: 通过对京津以南河北平原年降水量、地下水补给量和农业开采量三者动态规律及其互动关系研究表明, 年降水量减增, 同期地下水补给量与开采量呈互逆变化规律, 即降水量减小, 补给量变少, 开采量增大; 年降水量增大, 补给量较多, 开采量减小.在连续枯(丰) 水年份, 当年降水量减少(增加) 10mm时, 则地下水系统水量减少7.08 (增加7.06) mm, 水位下降(上升) 5.2~8.7cm; 在10~320mm变幅内, 当年降水量减少(增加) 10%时, 则地下水系统水量减少7.98 (增加7.67) %.气候旱化过程中降水变化对引起补给量减少和开采量增加的幅度, 大于气候增雨过程中降水变化对补给量增大和开采量减少的影响程度.因此, 需要重视连续枯水年份降水变化对地下水系统影响的应对举措, 这对于提高我国北方区域地下水资源供给安全保障具有重大意义.Abstract: The research from 1986 to 2000 into the dynamic processes and interactions among annual precipitation, annual groundwater recharge from rainfall and annual pumpage for agriculture in Hebei plain to the south of Beijing and Tianjin, revealed the negative relationship between the increase or decrease in annual precipitation and the contemporaneous annual groundwater recharge from rainfall and the annual pumpage. In another word, when the annual precipitation decreases, the recharge decreases, but the pumpage increases. However, when the annual precipitation increases, the recharge increases to a relatively great extent, but the pumpage decreases. During the successive years of shortage or abundance of water, if the annual precipitation decreases (or increases) by 10 mm, the water quantity of the regional groundwater system decreases by 7.08 mm (or increases by 7.06 mm) and the corresponding water level falls (rises) by 5.2 cm to 8.7 cm. In the range of the annual precipitation variation from 10 to 320 mm, if the annual precipitation decreases (or increases) by 10%, the water quantity of the regional groundwater system decreases by 7.98% (or increases by 7.67%), the corresponding water level falls (rises) at the same rate. The effect of the precipitation variation both on the decrease in recharge and on the increase in pumpage in the dehumidification season is greater than that on the increase in recharge and on the decrease in pumpage in the increasingly raining season. Therefore, more attention should be paid to some measures that may soften the effect of the precipitation variation on the underground water system in the successive years of shortage of water, which may be of great significance to the stability and security in the underground water supply system in the north of China.
-
表 1 1986—2000年研究区农田灌溉面积(亿m2/a)
Table 1. Irrigated area of land for growing field crops in the study area since 1986 to 2000
表 2 1986—2000年降水量变化对地下水系统水量及水位影响程度
Table 2. Influence intensity of annual precipitation variation to regional groundwater quantity and its level in Hebei plain since 1986 to 2000
-
[1] Fei, Y. H., 2006. Evolution and utilization and conservation of regional groundwater in the Hebei plain to the south of Beijing and Tianjing [Dissertation]. Hehai University, Nanjing, 6-33 (in Chinese with English abstract). [2] Jia, J. S., Liu, C. M., 2002. Groundwater dynamic drift and response to different exploitation in the North China plain. Acta Geographica Sinica, 57 (2): 201-209 (in Chinese with English abstract). [3] Liu, C. M., 2003. Ecological effect of water transfer from south to north to restore groundwater in the North China plain. South to North Water Transfers and Water Science, 24 (1): 17-19 (in Chinese with English abstract). [4] Stephen, C. F., 2002. Evaluation of groundwater for irrigation and sustainable utilization in the North China plain. Guidance Group of World Bank and World Water Company, 19-156 (in Chinese). [5] Sun, M., Wang, L. Q., Xue, M. X., 2001. Statistic method on the agricultural exploitation. Groundwater, 23 (2): 71-73 (in Chinese with English abstract). [6] Wu, K., Chen, J. Y., Liu, S. P., et al., 1997. Research on waterconsumption characteristics of crops and water use efficiency in agriculture of Yucheng area, the North China plain. China Meteorological Press, Beijing, 131-137 (in Chinese). [7] Yang, Y. H., Hao, X. H., Cao, J. S., et al., 2001. Relationship between precipitation, crop growth and groundwater dropping in the piedmount region of Taihang Mountain. Chinese Journal of Ecology, 20 (6): 4-7 (in Chinese with English abstract). [8] Zhang, G. H., Fei, Y. H., Liu, K. Y., et al., 2004. Evolution of groundwater and countermeasures in Haihe plain. Science Press, Beijing, 123-151 (in Chinese). [9] 费宇红, 2006. 区域地下水演变、利用与涵养研究: 以京津以南河北平原为例(博士学位论文), 南京: 河海大学, 6-33. [10] 贾金生, 刘昌明, 2002. 华北平原地下水动态及其对不同农业开采量响应的计算. 地理学报, 57 (2): 201-209. doi: 10.3321/j.issn:0375-5444.2002.02.010 [11] 刘昌明, 2003. 发挥南水北调的生态效益、修复华北平原地下水. 南水北调与水利科技, 24 (1): 17-19. doi: 10.3969/j.issn.1672-1683.2003.01.005 [12] 斯蒂芬·福斯特, 2002. 华北平原地下水灌溉农业的评估和可持续发展. 世界银行、全球水伙伴地下水管理指导组, 19-156. [13] 孙明, 王立琴, 薛明霞, 2001. 农业区地下水开采量统计方法研究. 地下水, 23 (2): 71-73. doi: 10.3969/j.issn.1004-1184.2001.02.009 [14] 吴凯, 陈建耀, 刘士平, 等, 1997. 华北平原禹城地区作物耗水特性与农业水利用水率研究. 北京: 气象出版社, 131-137. [15] 杨永辉, 郝小华, 曹建生, 等, 2001. 太行山山前平原区地下水下降与降水、作物的关系. 生态学杂志, 20 (6): 4-7. doi: 10.3321/j.issn:1000-4890.2001.06.002 [16] 张光辉, 费宇红, 刘克岩, 等, 2004. 海河平原地下水演化与对策. 北京: 科学出版社, 123-151.