Application of Riverbed Quiferous System to Indoor Simulation of Decontamination of Aromatic Hydrocarbons
-
摘要: 为了模拟长期排污河流中单环芳烃在地表水-地下水系统迁移转化规律以及不同含水介质和水动力条件对单环芳烃的净化特征, 室内土柱实验采用3种有代表性的天然砂土为研究对象, 以生活污水模拟纳污河流, 实验历时5个月.单环芳烃的自然净化作用主要发生在河床底下0.4m内, 垂直向下单环芳烃各组分浓度呈由高到低的分布特征; 粗砂对苯、甲苯和单环芳烃总量(TBETX) 总净化率分别为32.06%、21.39%和27.13%;中砂1分别为76.26%、81.40%、87.99%;中砂2分别为68.94%、74.41%、81.69%, 这表明, 河流污染初期河床底含水介质完全饱水, 含水介质颗粒尺寸越大, 对单环芳烃的净化率就越低, 单环芳烃容易迁移进入地下水中; 随着时间的延长, 河床底部淤泥层不断增加, 砂层中的水流处于非饱和状态, 淤泥层和含水介质系统对单环芳烃的净化能力较饱水流时大, 单环芳烃不容易迁移进入地下水.Abstract: In the five-month indoor earth-column experiment, three representative kinds of natural sand are analyzed, and the refluxes of domestic sewage are used to simulate the contaminated river flow. This indoor experiment aims at both the simulation of the migration and transfer law of aromatic hydrocarbons in the surface water-underground water system in a long-term drainage river and that of the impacts of different aquiferous media and hydrodynamic conditions on the decontamination of aromatic hydrocarbons. Aromatic hydrocarbons in column decrease gradually with the flow direction, where the natural decontamination occurs at 0.4 m of the surface layer. Total decontamination ratios of benzene, toluene and total aromatic hydrocarbons (TBETX) in the coarse sand is 32.06%, 21.39% and 27.13%, respectively; in the first kind of the medium sand is 76.26%, 81.40% and 87.99%, respectively; in the second kind of the medium sand is 68.94%, 74.41% and 81.69%, respectively. All these results indicate that the hydrous medium in the riverbed is perfectly saturated in the early period of the contamination of the river, where the greater the size of the hydrous medium, the lower the decontamination rate of the aromatic hydrocarbons. In this case, the aromatic hydrocarbons migrate easily into the underground water system. As times went by, the silt seams in the riverbed became thicker and thicker till unsaturated flow moves into the sand. However, when the decontamination rate of aromatic hydrocarbons in the silt seams and hydrous medium system is greater than that in the saturated water flow, the aromatic hydrocarbons will not easily migrate into the corresponding underground water system.
-
Key words:
- aromatic hydrocarbons /
- transportation /
- decontamination /
- river
-
表 1 实验污水常见物理化学指标
Table 1. Physical chemistry properties of wastewater
表 2 试验砂土物理性质指标
Table 2. Physical properties of sand
表 3 不同砂土中单环芳烃特征
Table 3. Characteristics of aromatic hydrocarbons in different sands
表 4 土柱流量变化情况
Table 4. Changes of flux in different columns
-
[1] Doussan, C. M., Poitevin, G. H., Ledoux, E. F., et al., 1997. River bank filtration: Modeling of the changes in water chemistry with emphasis on nitrogen species. Journal of Contam. Hydrology, 25: 129-156. doi: 10.1016/S0169-7722(96)00024-1 [2] Hiscock, K. M., Grische, K. T., 2002. Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, 266: 139-144. doi: 10.1016/S0022-1694(02)00158-0 [3] Juliet, S. J., Lawrence, A., Baker, P. F., 1999. Geochemical transformations during artificial groundwater recharge: Soil-water interaction of inorganic constituents. Wat. Res., 33 (1): 196-206. doi: 10.1016/S0043-1354(98)00195-X [4] Li, Z. P., Chen, P. H., Yin, G. S., 2004. Influence on shallow groundwater by phosphorus in polluted river. Journal of Jilin University (Earth Science Edition), 34 (3): 435-440 (in Chinese with English abstract). [5] Li, Z. P., Zhang, J. B., Qu, J. H., et al., 2004. Influence on shallow groundwater by NH3-Nin polluted river. Earth Science—Journal of China University of Geosciences, 29 (3): 363-368 (in Chinese with English abstract). [6] Liang, B., Wang, C., Wang, P. F., et al., 2003. Impacts of river wastewater unsaturated filtration on its offshore soil and groundwater quality. Advances in Water Science, 14 (5): 548-553 (in Chinese with English abstract). [7] Liu, H. Z., Lu, X. Y., 2001. Comparison on treatment of polluted rivers in China and other countries. World Environment, 4: 27-30 (in Chinese). [8] Liu, Z. C., Zhang, L. S., Nie, Y. F., et al., 1991. Contamination and control of groundwater system. China Environmental Science Press, Beijing, 322-330 (in Chinese). [9] Rene, P. S., John, W., 1981. Transport of nonpolar organic compounds from surface water to groundwater. Environmental Science & Technology, 15 (11): 1360-1367. [10] Wang, C., Li, Y., 2002. Impacts of river wastewater on its offshore groundwater environment. Advances in Water Science, 13 (2): 53-55 (in Chinese with English abstract). [11] 李志萍, 陈平货, 阴国胜, 2004. 污染河水中磷对浅层地下水的影响. 吉林大学学报(地球科学版), 34 (3): 435-440. [12] 李志萍, 张金炳, 屈吉鸿, 等, 2004. 污染河水中氨氮对浅层地下水的影响. 地球科学——中国地质大学学报, 29 (3): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403016.htm [13] 梁斌, 王超, 王沛芳, 等, 2003. 河流污水非饱和入渗对沿岸地下水质的影响. 水科学进展, 14 (5): 548-553. doi: 10.3321/j.issn:1001-6791.2003.05.003 [14] 刘鸿志, 卢雪云, 2001. 中外河流水污染治理比较. 世界环境, 4: 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ200104015.htm [15] 刘兆昌, 张兰生, 聂永锋, 等, 1991. 地下水系统的污染与控制. 中国环境科学出版社, 北京, 322-330. [16] 王朝, 李勇, 2002. 污染河道对沿岸地下水环境影响规律研究. 水科学进展, 13 (2): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200205000.htm