Measurement of Complex Permittivity of Dry Rocks and Minerals with Perturbation Method at 9 370 MHz
-
摘要: 微扰法是测量微波频率下介质材料复介电常数的简单易行的方法, 尤其对低ε′和低tanδ介质的测量很灵敏, 至今仍在广泛应用.但大部分岩矿样品的ε′和tanδ超出了微扰法的量程范围, 无法用该方法直接测量.本文提出了基于微扰法测量干燥岩矿样品复介电常数的新方法.先将干燥岩矿研磨成粉, 并与ε′和tanδ较小且介电性质稳定的聚乙烯粉末以一定体积百分比混合, 热压成型制样; 用微扰法测量岩塑混合物的复介电常数.两相混合体系的介电性质与其中每相的关系可以用Lichtenecker混合公式描述, 由于聚乙烯的复介电常数已知, 因此, 岩矿样品的复介电常数可由岩塑混合物的复介电常数计算得到.测量结果表明, 9370MHz时, 同一试样用矩形谐振腔微扰法、圆形谐振腔微扰法和传输反射法的测量结果一致, 并提供了部分干燥岩石和矿物的复介电常数测量数据.
-
关键词:
- 微扰法 /
- 稀释法 /
- Lichtenecker公式 /
- 复介电常数 /
- 岩石和矿物
Abstract: Resonant cavity perturbation method, widely used as an easy and fast method for determining dielectric properties of materials at microwave frequencies, is very sensitive to the measurement of the materials with low ε′ and tanδ values. However, it is not suitable to measure a majority of rocks and minerals whose ε′ and tanδ values are beyond the measurement range using the perturbation method. This paper proposes the polythene dilution method, a new perturbation-based method, to measure complex dielectric permittivity of dry rocks and minerals over 9 370 MHz. At first, the dry rocks and minerals are ground into powder, and then they are mixed in a given proportion with polythene powder, both with relatively low ε′ and tanδ and with stable dielectric property, and then hot-pressed into fine granular specimens. The perturbation method is used to measure the complex dielectric permittivity of the rock and plastic mixture. The dielectric property of the two-phase mixed system and its relation to either of the two phases can be obtained with Lichtenecker mixture formulae. Since the complex dielectric permittivity of the polythene is known, the complex dielectric permittivity of the rock samples can be calculated from that of the rock and mineral samples. At 9 370 MHz, as shown by the measurement results, the measurement of the same testing sample produced the same result with either of the perturbation method of rectangular or round resonant cavities, or of the transmission reflectometry, and provided us with the complex dielectric permittivity data measured from part of the dry rocks and minerals. -
表 1 9 370 MHz微扰法对标准物质复介电常数测量结果及其与标称值的比较
Table 1. Comparison between complex dielectric permittivity and loss tangent of six standard materials measured by cavity perturbation method and its criterion values at 9 370 MHz
表 2 9 370 MHz谐振腔微扰法和传输/反射法对部分岩矿样品及聚乙烯复介电常数测量结果
Table 2. Complex dielectric permittivity of some rocks, minerals and polythlene measured by cavity perturbation method and transmission reflection method at 9 370 MHz respectively
表 3 聚乙烯稀释法间接测量与杆状岩矿试样直接测量的复介电常数比较
Table 3. Complex dielectric permittivity of some rocks and minerals measured by polythene dilution method indirectly and using rocks and minerals specimen directly
表 4 部分岩矿样品的复介电常数
Table 4. Complex dielectric permittivity of some rocks and minerals
-
[1] Ahmad, M. S., Zihlif, A. M., 1990. Some magnetic and electrical properties of basalt rocks. Materials Letters, 10 (4-5): 207-214. doi: 10.1016/0167-577X(90)90090-9 [2] Arthar, V., 1954. Dielectric materials and applications. The M. I. T. Press, Cambridge, 1-361. [3] ASTM D2520-01., 1977. Standard test methods for complex permittivity (dielectric constant) of solid electrical insulating materials at microwave frequencies and temperatures to 1650℃. ASTM International, 613-634. [4] Courtney, W. E., 1970. Analysis and evaluation of a methodof measuring the complex permittivity and permeabilityof microwave insulators. IEEE Trans. on Microwave Theory and Techniques, 18 (8): 476-485. doi: 10.1109/TMTT.1970.1127271 [5] Griffin, R. E., 1974. Dielectric constants and dissipation factors of simulated lunar rocks. International Journal of Rock Mechanics and Mining Science & Geomechanics (Abstracts), 11 (11): A222. [6] Hook, W. R., Livingston, N. J., 1995. Errors in converting time domain reflectometry of propagation velocity to estimates of soil water content. Soil Science Society of America Journal, 59: 35-41. doi: 10.2136/sssaj1995.03615995005900010005x [7] Howell, B. F., Cicastro, P. H., 1961. Dielectric behavior of rocks and mineral. American Mineralogist, 46 (3): 269-288. [8] Kobayashi, Y., Tamura, H., Round, R., 1994. Test on a dielectric resonator method for measuring complex permittivity at microwave frequency. IEICE Transactions, E77 (6): 882-887. [9] Lichtenecker, K., 1926. Die dielektrizitats konstante naturlicher und kunstlicher mischkorper. Physikalische Zeitschrift, 27: 115-158. [10] Lichtenecker, K., Rother, K., 1931. Die Herleitung des logarithmischen Mischungsgesetzes aus allgemeinen Prinzipien der stationaeren Stroemung. Physikalische Zeitschrift, 32: 255-260. [11] Metaxas, A. C., Meredith, R. J., 1983. Industrial microwave heating. IEEE Power Engineering Series 4. Peter Peregrinus Limited, London, 1-313. [12] National Standard of China, 1987. Test method for complex permittivity of solid dielectric materials at microwave frequencies—Perturbation method, GB 7265.1-87. The Standard Publishing House of China, Beijing, 13-20 (in Chinese). [13] Rust, A. C., Russell, J. K., Knight, R. J., 1999. Dielectric constant as a predictor of porosity in dry volcanic rocks. Journal of Volcanology and Geothermal Research, 91: 79-96. doi: 10.1016/S0377-0273(99)00055-4 [14] Seyfried, M. S., Murdock, M. D., 1996. Calibration of time domain reflectometry for measurement of liquid water in frozen soils. Soil Science, 161: 87-98. doi: 10.1097/00010694-199602000-00002 [15] Ulaby, F. T., Bengal, T. H., Dobson, M. C., et al., 1990. Microwave dielectric properties of dry rocks. IEEE Transactions on Geoscience and Remote Sensing, 28 (3): 325-336. doi: 10.1109/36.54359 [16] Von Hippel, A., 1954. Dielectrics and waves. John Wiley and Sons Inc., New York, 1-73. [17] Wallin, S. R., 1985. Dielectric properties of heterogeneous media [Dissertation]. University of Wyoming, 46-106. [18] Wang, X. Y., Guo, H. D., Wang, C., et al., 1999. Relative dielectric constant of dry rocks. Chinese Science Bulletin, 44 (24): 2286-2292. doi: 10.1007/BF02885941 [19] Zakri, T., Laurent, J. P., 1998. Time domain reflectometry techniques for water content measurement. High Temp-High Pressures, 30: 19-23. doi: 10.1068/htec124 [20] Zakri, T., Laurent, J. P., Vauclin, M., 1998. Theoretical evidence for Lichtenecker's mixture formulae'based on the effective medium theory. Journal of Physics D Applied Physics, 31: 1589-1594. doi: 10.1088/0022-3727/31/13/013 [21] Zheng, Y. C., Wang, S. J., Feng, J. M., et al., 2005. Measurementof the complex permittivity of dry rocks and minerals: Application of polythene dilution method and Lichtenecker's mixture formulae. Geophysical Journal International, 163 (3): 1195-1202. doi: 10.1111/j.1365-246X.2005.02718.x [22] 中华人民共和国国家标准, 1987. GB7265.1-87: 固体电介质微波复介电常数的测试方法——微扰法. 北京: 中国标准出版社, 13-20.
计量
- 文章访问数: 3387
- HTML全文浏览量: 92
- PDF下载量: 2
- 被引次数: 0