Water in UHP Eclogites at CCSD: FTIR Analysis
-
摘要: 超高压变质岩中名义上无水矿物(NAMs) 在板块俯冲过程中可以携带一部分地表水进入上地幔, 这些水储存于地球深部并对地幔动力学有着重要的影响.对中国大陆科学钻探主孔榴辉岩中的绿辉石和石榴石进行了详细的显微傅立叶变换红外光谱(Micro-FTIR) 分析, 结果显示所有绿辉石和石榴石颗粒都含有结构水, 其水含量范围分别在68~29μg/g和20~75μg/g.榴辉岩全岩的水含量为150~300μg/g.绿辉石和石榴石结构水含量的分布出现2种情况: (1) 颗粒内部的均一分布; (2) 不均匀分布, 表现为水含量从核部到幔部到边部随之增加或水含量核部、边部低而幔部高.电子探针结果表明水含量分布不均与矿物化学成分无直接关系.位错分布不均匀可能导致了颗粒内部结构水分布的不均匀.Abstract: Along with the processes of continent crust subduction, the nominally anhydrous minerals (NAMs) in UHP rocks can transport some surface water into the deep upper mantle. Such water stored in the deep upper mantle plays an important role in the dynamics of the earth's interior. Omphacite and garnet in UHP eclogites from the Chinese Continental Scientific Drilling (CCSD) main hole have been investigated by Fourier transform infrared spectroscopy (FTIR) in this work. The result demonstrates that all omphacite and garnet grains contain structural water from 68μg/g to 529μg/g and from 20μg/g to 875μg/g respectively; the contents of structural water in the whole rock of eclogite range from 150μg/g to 300μg/g. There are two types of water distribution characteristics within single garnet and omphacite grains, one is homogeneous and the other is inhomogeneous. The inhomogeneous phenomena show that the water contents increase from the core, the middle to the rim within the grains, and both the core and the rim contents are low but the middle is high. Electron probe microanalysis shows that the inhomogeneous distribution of water content has no direct relation with the chemical composition of the mineral. Inhomogeneous dislocation is likely to result in the inhomogeneous distribution of structural water in single grain NAMs.
-
Key words:
- Chinese Continental Scientific Drilling /
- eclogite /
- garnet /
- omphacite /
- structural water
-
表 1 CCSD主孔和毛北地区榴辉岩中绿辉石的红外光谱分析结果
Table 1. FTIR analysis of omphacites from UHP eclogites at CCSD main hole and Maobei
表 2 CCSD主孔和毛北地区榴辉岩中石榴石的红外光谱分析结果
Table 2. FTIR analysis of garnets from UHP eclogites at CCSD main hole and Maobei
表 3 CCSD主孔和毛北地表榴辉岩中石榴石的化学组成
Table 3. Chemical compositions of garnets in eclogites from CCSD main hole and Maobei
-
[1] Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist, 80: 465-474. doi: 10.2138/am-1995-5-607 [2] Bell, D. R., Rossman, G. R., 1992a. Water in earth's mantle: The role of nominally anhydrous minerals. Science, 255: 1392-1396. [3] Bell, D. R., Rossman, G. R., 1992b. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib. Mineral. Petrol., 111: 161-178. doi: 10.1007/BF00348949 [4] Blauchard, M., Jugrin, J., 2004. Hydrogen diffusion in Dora Maria Prope. Phys. Chem. Minerals, 31: 593-605. doi: 10.1007/s00269-004-0421-z [5] Chen, J., Xu, Z. Q., Li, X. P., 2005. The formation of nanometer twins of rutile and its textural characteristics in UHP eclogite. Acta Petrologica Sinica, 21 (2): 399-404 (in Chinese with English abstract). [6] Huang, X. G., Xu, Y. S., Karoto, S. I., 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746-749. doi: 10.1038/nature03426 [7] Katayama, I., Karato, S., Brandon, M., 2005. Evidence of high water content in the upper mantle inferred from deformation microstructures. Geology, 33: 613-616. [8] Katayama, I., Nakashi ma, S., Yuri moto, H., 2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Earth and Planetary Science Letters, 86: 245-259. [9] Katayama, I., Nakashi ma, S., 2003. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am. Mineral, 88: 229-234. doi: 10.2138/am-2003-0126 [10] Langer, K., Robarick, E., Sobolev, N. V., et al., 1993. Single crystal spectra of garnets from diamondiferous high pressure metamorphic rocks from Kazakhstan: Indications for OH-, H2O, and FeTi charge transfer. Eur. J. Mineral, 5: 1091-1100. doi: 10.1127/ejm/5/6/1091 [11] Liang, F. H., Su, S. G., You, Z. D., et al., 2005. Retrograde metamorphism of eclogites from the main hole (0-2000m) of the Chinese Continental Scientific Drilling, Donghai, Jiangsu Province. Geology in China, 32 (2): 218-229 (in Chinese with English abstract). [12] Liu, X. W., Jin, Z. M., Jin, S. Y., et al., 2005. Differences of deformation characteristics of garnets from two types of eclogites: Evidence from TEM study. Acta Petrologica Sinica, 21 (2): 411-420 (in Chinese with English abstract). [13] Lu, R., Keppler, H., 1997. Water solubility in pyrope to 100 kbar. Contrib. Mineral. Petrol., 129: 35-42. doi: 10.1007/s004100050321 [14] Paterson, M. S., 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Mineralogie, 1: 20-29. [15] Peslier, A., Luhr, J. F., Post, J., 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth and Planetary ScienceLetters, 201: 69-86. doi: 10.1016/S0012-821X(02)00663-5 [16] Rauch, M., Keppler, H., 2002. Water solubility in orthopyrocene. Contrib. Mineral. Petrol., 143: 525-536. doi: 10.1007/s00410-002-0365-6 [17] Rossman, G. R., Beran, A., Langer, K., 1989. The hydrous component of pyrope from the Dora Maira Massif, Western Alps. Eur. J. Mineral., 1: 151-154. doi: 10.1127/ejm/01/1/0151 [18] Shen, K., Zhang, Z. M., Sun, X. M., et al., 2005. Composition and evolution of ultrahigh-pressure metamorphic fluids: Afluidinclusion study of the drill cores from the main hole of Chinese Continental Scientific Drilling Program. Acta Petrologica Sinica, 21 (2): 489-504 (in Chinese with English abstract). [19] Sheng, Y. M., Xia, Q. K., Ding, Q., et al., 2005a. Water in garnets from Dabieshan eclogites: FTIR analysis. Acta Mineralogica Sinica, 25 (4): 334-340 (in Chinese with English abstract). [20] Sheng, Y. M., Xia, Q. K., Hao, Y. T., et al., 2005b. Water in UHP eclogites at Shuanghe, Dabieshan: Micro-FTIR analysis. Earth Science—Journal of China University of Geosciences, 30 (6): 673-684 (in Chinese with English abstract). [21] Sheng, Y. M., Xia, Q. K., Yang, X. Z., 2004. Heterogeneity of water in UHP eclogites from Bixiling in Dabieshan: Evidence from garnet. Chinese Science Bulletin, 49 (5): 481-486. doi: 10.1007/BF02900969 [22] Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide in pyroxenes: Variations in the natural environment. Am. Mineral., 75: 764-774. [23] Su, W., Cong, B. L., You, Z. D., 2002b. Plastic mechanism of deformation of garnet-water weakening. Science in China, 45 (10): 885-892. [24] Su, W., Ji, Z. P., Ye, K., et al., 2004. Distribution of hydrous components in jadeite of the Dabie Mountains. Earth Planet. Sci. Lett., 222: 85-100. doi: 10.1016/j.epsl.2004.02.028 [25] Su, W., You, Z. D., Cong, B. L., et al., 2002a. Cluster of water molecules in garnet of ultra-high pressure eclogite. Geology, 30 (7): 611-614. doi: 10.1130/0091-7613(2002)030<0611:COWMIG>2.0.CO;2 [26] Withers, A. C., Wood, B. J., Carroll, M. R., 1998. The OH content of pyrope at high pressure. Chem. Geol., 147: 161-171. doi: 10.1016/S0009-2541(97)00179-4 [27] Xia, Q. K., 2005. Water in the deep subducted continental plate: Message from NAMs. Bulletin of Mineralogy, Petrology and Geochemistry, 24 (1): 1-7 (in Chinese with English abstract). [28] Xia, Q. K., Chen, D. G., Rossman, G. R., 2000. An important carrier for HP-UHP metamorphic fluids: Nominally anhydrous minerals. Geological Review, 46 (5): 461-465 (in Chinese with English abstract). [29] Xia, Q. K., Sheng, Y. M., Xiao, Z. Y., et al., 2005. Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chemical Geology, 224: 237-246. doi: 10.1016/j.chemgeo.2005.08.003 [30] Xu, Z. Q., Zhang, Z. M., Liu, F. L., et al., 2004. The structure profile of 0-1200m in the main hole, Chinese Continental Scientific Drilling and its preliminary deformation analysis. Acta Petrologica Sinica, 20 (1): 53-72 (in Chinese with English abstract). [31] Yang, X. Z., Xia, Q. K., Yu, H. M., et al., 2006. The possible effect of hydrogen on the high electrical conductivity in the lower continental crust. Advance in Earth Science, 21 (1): 31-38 (in Chinese with English abstract). [32] Zhang, J. F., GreenⅡ, H. W., Bizhilov, K., et al., 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633-636. doi: 10.1038/nature02475 [33] Zhang, J. F., Jin, Z. M., GreenⅡ, H. W., et al., 2001. Hydroxyl in continental deep subduction zones: Evidences from UHP eclogites of Dabie Mountains. Chinese Science Bulletin, 46 (7): 592-596. doi: 10.1007/BF02900418 [34] Zhang, J. F., Jin, Z. M., GreenⅡ, H. W., 2005. Hydroxyl induced eclogite fabric and deformation mechanism. Chinese Science Bulletin, 50 (6): 559-564 (in Chinese). doi: 10.1360/csb2005-50-6-559 [35] Zhang, Z. M., Xu, Z. Q., Liu, F. L., et al., 2004. Geochemistry of eclogites from the main hole (100-2050m) of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20 (1): 27-42 (in Chinese with English abstract). [36] Zhang, Z. M., Zhang, J. F., Xu, Z. Q., et al., 2005. Petrology of eclogites from the main hole of the Chinese Continental Scientific Drilling Project. Geologyin China, 32 (2): 205-217 (in Chinese with English abstract). [37] 陈晶, 许志琴, 李旭平, 2005. 超高压榴辉岩中金红石的纳米级微构造特征及成因机制探讨. 岩石学报, 21 (2): 399-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502013.htm [38] 梁凤华, 苏尚国, 游振东, 等, 2005. 中国大陆科学钻探主孔0-2000m榴辉岩的退变质过程. 中国地质, 32 (2): 218-229. doi: 10.3969/j.issn.1000-3657.2005.02.005 [39] 刘祥文, 金振民, 金淑燕, 等, 2005. 两类榴辉岩的石榴石变形特征差异——来自TEM的证据. 岩石学报, 21 (2): 411-420. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502015.htm [40] 沈昆, 张泽明, 孙晓明, 等, 2005. 超高压变质流体的组成与演化: 中国大陆科学钻探工程主孔岩心的流体包裹体研究. 岩石学报, 21 (2): 489-504. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502024.htm [41] 盛英明, 夏群科, 杨晓志, 2004. 大陆深俯冲过程中水分布的不均一性: 大别山碧溪岭榴辉岩中石榴石的红外光谱分析. 科学通报, 49 (4): 390-395. doi: 10.3321/j.issn:0023-074X.2004.04.016 [42] 盛英明, 夏群科, 丁强, 等, 2005a. 大别山榴辉岩中石榴石的结构水: 红外光谱分析. 矿物学报, 25 (4): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200504003.htm [43] 盛英明, 夏群科, 郝艳涛, 等, 2005b. 大别山双河超高压榴辉岩中的水: 微区红外光谱分析. 地球科学——中国地质大学学报, 30 (6): 673-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506003.htm [44] 夏群科, 2005. 大陆深俯冲过程中的水: "名义上无水矿物"的信息. 矿物岩石地球化学通报, 24 (1): 1-7. doi: 10.3969/j.issn.1007-2802.2005.01.001 [45] 夏群科, 陈道公, Rossman, G. R., 2000. 高压-超高压变质流体的一种重要载体: 名义上的无水矿物. 地质评论, 46 (5): 461-465. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200005003.htm [46] 许志琴, 张泽明, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔1200m构造柱及变形构造初步解析. 岩石学报, 20 (1): 53-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401004.htm [47] 杨晓志, 夏群科, 于慧敏, 等, 2006. 大陆下地壳高电导率的起源: 物中的结构水. 地球科学进展, 21 (1): 31-38. doi: 10.3321/j.issn:1001-8166.2006.01.005 [48] 章军锋, 金振民, Green, H. W., 2005. 结构水引起的榴辉岩变形组构和变形机制. 科学通报, 50 (6): 559-564. doi: 10.3321/j.issn:0023-074X.2005.06.010 [49] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100-2050m) 榴辉岩岩石化学研究. 岩石学报, 20 (1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm [50] 张泽明, 张金凤, 许志琴, 等, 2005. 中国大陆科学钻探工程主孔榴辉岩的岩石学研究. 中国地质, 32 (2): 205-217. doi: 10.3969/j.issn.1000-3657.2005.02.004