Blooming of Bacteria and Algae: Possible Killer of Devonian Frasnian-Famennian Mass Extinction
-
摘要: 广西桂林杨堤剖面的地球化学数据显示晚泥盆世弗拉期末—法门期海平面波折上升、水体从富氧变为贫氧, 同时无机、有机碳同位素(δ13Ccarb和δ13Ckerogen) 分别从+0.43 (‰V-PDB) →+3.54 (‰V-PDB) 和-29.38 (‰V-PDB) →-24.14 (‰V-PDB), 可以与北美、欧洲等地进行对比.通过对海平面变化、缺氧程度分析, 并结合岩石薄片, 我们认为这种快速正向波动是由以菌藻类生物为主要生产者的海洋生产力迅速增加引起的.镜下观察发现, F-F大灭绝中菌藻类不但未受影响反而更加繁盛.与之相对应, 对营养盐P及菌藻类生长刺激元素Fe、Zn的研究也发现在晚弗拉期出现几次含量突增.更值得注意的是其来源主要由陆地输入, 这就印证了晚泥盆世陆生植物大规模繁盛使得生物化学风化盛行, 导致地表径流向陆表海输送的营养物质增加改变了海洋化学环境, 富营养化的海水使菌藻类繁盛并造成其他生物灭绝的假说.Abstract: Geochemical data from the Yangdi Section of Guilin, Guangxi, showed an oxygen-rich to dysaerobic environment with the vibrating rise in sea-level in the Late Frasnian Stage, Devonian. At the same time, δ13Ccarb and δ13Ckerogen increased from +0.43 (‰V-PDB) to +3.54 (‰V-PDB), from -29.38 (‰V-PDB) to -24.14 (‰V-PDB), respectively, which could be related with the data from Europe, North America and Australia. These positive fluctuations were caused by the rapid increase in the so-called green algae and cyanobacteria (mostly < 0.1 mm). These bacteria and algae, as was observed through microscope, did not seem to have been influenced by the mass extinction event of Late Frasnian, but grew more rapidly. Correspondingly, the research into nutritious salt P and algae growth-stimulating elements such as Fe and Zn revealed several blooms of geomicrobes in the Frasnian. In particular, the land supply of these elements indicated that a large-scale growth of the terrigenous plants in the Late Devonian stimulated the prevalence of biochemical weathering, leading to the conclusion that the increase in nutritious elements imported from the surface runoff to the continental shelf changed the ocean chemical environment. Since these nutritious elements are closely associated with land supply, it may be true that the shallow sea eutrophication caused by land nutrient influx may have destroyed the surface-water ecosystem.
-
Key words:
- mass extinction /
- Devonian /
- δ13Ccarb /
- bacteria and algae /
- eutrophication /
- Guangxi.
-
图 1 华南中、晚泥盆世古地理图(吴诒等, 1997)
1.古陆; 2.浅海沉积区; 3.半深海沉积区; 4.深海沉积区; 5.断层构造; 6.钦防海槽; 7.剖面位置
Fig. 1. Paleogeography of the Middle-Late Devonian in South China
图 2 杨堤剖面上泥盆统F-F之交化学地层与菌藻类生物分布综合柱状图
1.扁豆灰岩; 2.泥灰岩; 3.钙质浊积岩; 4.钙质页岩; 5.灰岩; 6.含潜穴灰岩; 7.上triangularis带; 8.贫氧; 9.缺氧; 10、11、12.粗枝藻; 13、14.不明藻类; 15、16、17.不明蓝细菌; 18.葛万藻; 19.钙球; 20.直管藻; 21.疑似螺旋藻; 22.疑似念珠藻; 23.努亚藻; 24.疑似直管藻; 25.肾形藻
Fig. 2. Chemostratigraphic profiles and bacterium-alga distributions of the Late Devonian F-F transition from the Yangdi Section
图 4 杨堤剖面F-F之交的菌藻类微生物
a-b.葛万藻(3, 38, 39, 40层); c.肾形藻(38层); d-f.疑似念珠藻(36, 39层); g-h.菌团(3, 19, 34, 36, 39, 40层); i-j.管状蓝细菌(27, 34, 36, 39, 40-43层); k.粗枝藻(整个剖面); l.钙球(整个剖面); m.努亚藻(36, 38, 39, 40层); n-o.不明菌藻类(36, 38, 38, 40层)
Fig. 4. Bacteria and algae in the Late Devonian F-F transition in Yangdi Section, Guangxi, South China
表 1 杨堤剖面F-F之交地球化学数据
Table 1. Geochemical data from the Yangdi Section in the F-F transition
-
[1] Bai, S. L., 1998. Chemo-biostratigraphic study on the Devo-nian Frasnian-Famennian event. Acta Scientiarum Naturalium, Universitatis Pekinensis, 34 (2-3): 363-369 (in Chinese with English abstract). [2] Bai, S. L., Bai, Z. Q., Ma, X. P., et al., 1994. Devonianevents and biostratigraphy of South China. Conodontzonation and correlation, bio-event and chemo-event, Milankovitch cycles and nickel-episode. Peking Univer-sity Press, Beijing. [3] Buggisch, W., 1991. The global Frasnian-Famennian Kell-wasser event. Gelologische Rundschau, 80 (1): 49-72. doi: 10.1007/BF01828767 [4] Cao, Y., Li, D. J., Zhang, J., 2002. Progress in the researchof iron li mitation to marine phytoplankton. Marine Science Bulletin, 21 (6): 83-90 (in Chinese with English abstract). [5] Chen, D. Z., Qing. H. R., Li, R. W., 2005. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corgand 87Sr/86Sr isotopic systematics. Earth and Planetary Science Letters, 235: 151-166. doi: 10.1016/j.epsl.2005.03.018 [6] Chen, D. Z., Qing, H. R., Yan, X., et al., 2006. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistryof chert. Sedi mentary Geology, 183: 203-216. doi: 10.1016/j.sedgeo.2005.09.020 [7] Chen, D. Z., Tucker, M., Shen, Y. A., et al., 2002. Carbonisotope excursions and sea-level change: Implications forthe Frasnian-Famennian bioticcrisis. Journal of the Geological Society, 159: 623-626. doi: 10.1144/0016-764902-027 [8] Gao, Y. H., 2001. Studies ontaxonomy, ecology and bioactiveproducts of marine microalgae. Journal of Xiamen University (Natural Science), 40 (2): 566-573 (in Chinese with English abstract). [9] Girard, C., Albarède, F., 1996. Trace elements in conodont phosphates from the Frasnian/Famennian boundary. Palaeogeography Palaeocli matology Palaeoecology, 126: 195-209. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404006.htm [10] Girard, C., Lécuyer, C., 2002. Variations in Ce anomalies ofconodonts through the Frasnian/Famennian boundaryof Poland (Kowala-Holy Cross Mountains): Implications for the redox state of sea water and biodiversity. Palaeogeography Palaeocli matology Palaeoecology, 181: 299-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202104008.htm [11] Gong, Y. M., Li, B. H., Si, Y. L., et al., 2002b. Late Devonian red tide and mass extinction. Chinese Science Bulletin, 47 (13): 1138-1144. doi: 10.1360/02tb9255 [12] Gong, Y. M., Xu, R., Tang, Z. D., et al., 2005. The UpperDevonian orbital cyclostratigraphy and numerical datingconodont zones from Guangxi, South China. Science in China (Series D), 48 (1): 32-41. [13] Gong, Y. M., Xu, R., Tang, Z. D., et al., 2005. Relationships between bacterial-algal proliferating and mass extinctionin the Late Devonian Frasnian-Famennian Transition: Enlightening from carbon isotopes and molecular fos-sils. Science in China (Series D), 48 (10): 1656-1665. [14] Gong, Y. M., Li, B. H., Wu, Y., 2002a. Molecule-strati-graphic research in Devonian Frasnian-Famennian tran-sition. Progress in Natural Science, 12 (3): 292-297 (in Chinese). [15] Gu, Z. Y., Xu, B., Liu, Q., et al., 2004. Carbon isotope re-cords fromthe Upper Devonian in Guilin, South Chinafor pertubations in the global carbon cycle. In: Jie, J. Y., Fang, Z. J., eds., Mass extinction and recovery, evi-dence fromthe Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Hefei, 457-472 (in Chinese). [16] Hatch, J. R., Leventhal, J. S., 1992. Relationship between in-ferred redox potential of the depositional environmentand geochemistry of the Upper Pennsylvanian (Missou-rian) Stark shale member of the Dennis li mestone, Wabaunsee County, Kansas, U. S. A. . Chemical Geolo-gy, 99: 65-82. doi: 10.1016/0009-2541(92)90031-Y [17] Holser, W. T., 1997. Geochemical events documented in in-organic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology, 132: 173-182. doi: 10.1016/S0031-0182(97)00070-9 [18] Holser, W. T., Magaritz, M., Pipperdan, R. L., 1996. Globalisotope events. In: Walliser, O. H., ed., Global eventsand event stratigraphy. Springer Verlag, Berlin, 63-87. [19] Huang, S. J., 1997. Astudy on carbon and strotiumisotopesof Late Paleozoic carbonate rocks in the Upper Yangtzeplatform. Acta Geologica Sinica, 71: 45-53 (in Chinese with English abstract). [20] Ji, Q., 1994. On the Frasnian-Famennian extinction event inSouth China as viewed in the light of conodont study. In: Professional papers of stratigraphy and palaeontolo-gy (No. 24). Geological Publishing House, Beijing, 79-107 (in Chinese). [21] Joachi mski, M. M., 1997. Comparison of organic and inor-ganic carbon isotope patterns across the Frasnian-Farmennian boundary. Palaeogeography Palaeocli matology Palaeoecology, 132: 133-145. doi: 10.1016/S0031-0182(97)00051-5 [22] Joachimski, M. M., Buggisch, W., 1993. Anoxic events in thelate Frasnian—Cause of the Frasnian-Famennian faunalcrisis? Geology, 21: 675-678. [23] Joachimski, M. M., Buggisch, W., 2002b. Conodont apatite δ18O signatures indicate cli matic cooling as a trigger of the LateDevonian mass extinction. Geology, 3 (8): 711-714. [24] Joachimski, M. M., Pancost, R. D., Freeman, K. H., et al., 2002a. Carbon isotope geochemistry of the Frasnian-Famennian transition. Palaeogeography Palaeocli matology Palaeoecology, 181: 91-109. doi: 10.1016/S0031-0182(01)00474-6 [25] Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic varia-tions in the C-isotopic composition of seawater: Strati-graphic and biogeochemical implications. Precambrian Research, 73: 27-49. doi: 10.1016/0301-9268(94)00070-8 [26] Li, G. G., Fan, Z. G., 2004. Marine ecology. High Education Press, Beijing, 37 (in chinese). [27] Li, R. X., Zhu, M. Y., 2004. Impact of iron on the growth of natural phytoplankton community. Advances in Marine Science, 22 (1): 50-54 (in Chinese with English abstract). [28] Li, S. Y., Jin, F. Q., Wang D. X., 1995. Geochemical charac-teristics of carbonate rock diagenesis. Experi mental Petroleum Geology, 17 (1): 55-62 (in Chinese with English abstract). [29] Liao, W. H., 2004. Biotic recoveries from the Frasnian-Famennian mass extinction event in South China. In: Massextinction and recovery, evidence from the Palaeozoic andTriassic of South China. University of Science and Technol-ogy of China Press, Hefei, 437-456 (in Chinese). [30] Liu, Y. J., Cao, L. M., 1985. The isotope geochemistry. Geological Publishing House, Beijing (in Chinese). [31] Ma, X. P., 2004. The Frasnian-Famennian mass extinction andrelated sedimentological-geochemical events—EvidencesfromSouth China. In: Rong, J. Y., Fang, Z. J., eds., Massextinction and recovery, evidence from the Palaeozoic andTriassic of South China. University of Science and Technol-ogy of China Press, Hefei, 409-436 (in Chinese). [32] Martin, R., 1996. Secular increase in nutrient level throughthe Phanerozoic: Implications for the productivity, bio-mas, and diversity of the marine biosphere. Palaios, 11: 209-219. doi: 10.2307/3515230 [33] Mclaren, D. J., 1970. Presidential address, time life andboundary. Journal of Paleontology, 48: 801-815. [34] Nan, J. Y., Zhou, D. Q., Ye, J. L., et al., 1998. Geochemistry of paleoclimate and paleo-ocean environment during Permian-Triassic in Guizhou Province. Acta Mineralogica Sinica, 18 (2): 239-249 (in Chinese with English abstract). [35] Nicoll, R. S., Playford, P. E., 1988. Upper Devonian Iridiumanomaly and the Frasnian-Famennian boundary in the Canning basin, Western australia. Geological Society of Australia Abstracts, 291: 296. [36] Qin, Y. W., Zhang, M. P., Zhou, G. F., 1998. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater. Journal of Oceanography of Huanghai & Bohai, 16 (3): 67-75 (in Chinese with English abstract). [37] Stanton, R. J., 1963. Upper Devonian calcispheres from Red-water and south Stirgeon Lake reefs, Alberta, Canada. Bulletin of Canadian Petroleum Geology, 4 (11): 410-418. [38] Wang, C. S., Hu, X. M., Li, X. H., 1999. Dissolved oxygenin palaeo-ocean: Anoxic events and high-oxic problems. Marine Geology & Quaternary Geology, 19 (3): 39-47 (in Chinese with English abstract). [39] Wang, C. Y., Ziegler, W., 2002. The Frasnian-Famennian co-nodont mass extinction and recovery in South China. Senckenbergiana Lethaea, 82 (2): 463-493. doi: 10.1007/BF03042948 [40] Wang, K., Geldsetzer, H. H. J., Goodfellow, W. D., et al., 1996. Carbon and sulfur isotope anomalies across theFrasnian-Famennian extinction boundary, Alberta, Can-ada. Geology, 24: 187-191. [41] Wang, K., Orth, C. J., Attrep, M., et al., 1991. Geochemicalevidence for a catastrophic biotic event at the Frasnian/Famennian boundary in South China. Geology, 19: 776-779. [42] Wu, M. Q., Goodfellow, W. D., Wang, K., et al., 1998. Anomalies of organic carbon isotopes across the P/Tboundary at the Lekang Section, Guizhou, South China, and their significance. Acta Mineralogica Sinica, 18 (1): 17-21 (in Chinese with English abstract). [43] Wu, Y., Gong, Y. M., Du, Y. S., 1997. Devonian sequencestratigraphy and sea level change of South China. China University of Geosciences Press, Wuhan (in Chinese). [44] Xu, B., Gu, Z. Y., Hu, B., et al., 2004. The pattern of varia-tions in carbonisotope of the Frasnian-Famennianli me-stone sequences in Guangxi, southern China. Acta Sedi-mentologica Sinica, 22 (4): 603-608 (in Chinese withEnglish abstract). [45] Xu, B., Gu, Z. Y., Liu, Q., et al., 2003. Carbon isotopic re-cord from Upper Devonian carbonates at Dongcun inGuilin, southern China, supporting the worldwide pat-tern of carbon isotope excursions during Frasnian-Fa-mennian transition. Chinese Science Bulletin, 48 (8): 856-862 (in Chinese). doi: 10.1360/csb2003-48-8-856 [46] Zhang, B. T., Ling, H. F., Chen, P. R., 2003. Trace elementgeochemical comparison among multiple geological ob-jects-problems and sollutions. Geology-Geochemistry, 31 (4): 102-106 (in Chinese with English abstract). [47] 白顺良, 1998. 泥盆纪弗拉斯-法门阶事件的化学-生物地层学研究. 北京大学学报(自然科学版), 34 (2-3): 363-369. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ8Z1.029.htm [48] 曹勇, 李道季, 张经, 2002. 海洋浮游生物铁限制的研究进展. 海洋通报, 21 (6): 83-90. [49] 高亚辉, 2001. 海洋微藻分类生态及生物活性物质研究. 厦门大学学报(自然科学版), 40 (2): 566-573. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK200102046.htm [50] 龚一鸣, 李保华, 吴诒, 2002a. 广西泥盆系弗拉阶—法门阶之交分子地层研究. 自然科学进展, 12 (3): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200203014.htm [51] 龚一鸣, 李保华, 司远兰, 等, 2002b. 晚泥盆世赤潮与生物集群灭绝. 科学通报, 47 (7): 554-560. [52] 龚一鸣, 徐冉, 汤中道, 等, 2004. 广西上泥盆统轨道旋回地层与牙形石带的数字定年. 中国科学(D辑), 34 (7): 635-643. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407004.htm [53] 龚一鸣, 徐冉, 汤中道, 等, 2005. 晚泥盆世F-F之交菌藻微生物繁荣与集群绝灭的关系: 来自碳同位素和分子化石的启示. 中国科学(D辑), 48 (2): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200502004.htm [54] 顾兆炎, 许冰, 刘强, 等, 2004. 华南泥盆纪弗拉期—法门期之交碳酸盐沉积物同位素记录. 见: 戎嘉余, 方宗杰. 生物大绝灭与复苏——来自华南古生代和三叠纪的证据. 合肥: 中国科技大学出版社, 457-472. [55] 黄思静, 1997. 上扬子地区晚古生代带海相碳酸盐的碳、锶同位素研究. 地质学报, 71: 45-53. [56] 季强, 1994. 从牙形类研究论华南弗拉斯阶—法门阶生物灭绝事件. 见: 中国地质科学院地层古生物论文集编辑委员会. 地层古生物论文集(第24辑). 北京: 地质出版社, 79-104. [57] 李冠国, 范振岗, 2004. 海洋生态学. 北京: 高等教育出版社, 37. [58] 李瑞香, 朱明远, 2004. 铁对自然群落浮游植物生长的影响. 海洋科学进展, 22 (1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200401007.htm [59] 李双应, 金福全, 王道轩, 1995. 碳酸盐岩成岩作用的微量元素地球化学特征. 石油实验地质, 17 (1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD501.007.htm [60] 廖卫华, 2004. 华南晚泥盆世弗拉期—法门期之交的生物大灭绝及其后的残存和复苏. 见: 戎嘉余, 方宗杰. 生物大绝灭与复苏——来自华南古生代和三叠纪的证据. 合肥: 中国科技大学出版社, 437-456. [61] 刘英俊, 曹励明, 1985. 元素地球化学导论. 北京: 地质出版社. [62] 马学平, 2004. 华南泥盆纪弗拉期—法门期之交的生物灭绝及相关沉积地化事件. 见: 戎嘉余, 方宗杰. 生物大绝灭与复苏——来自华南古生代和三叠纪的证据. 合肥: 中国科技大学出版社, 409-436. [63] 南君亚, 周德全, 叶健骝, 等, 1998. 贵州二叠纪—三叠纪古气候和古海洋环境的地球化学研究. 矿物学报, 18 (2): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199802019.htm [64] 秦延文, 张曼平, 周革非, 1998. 海洋中铁的来源、形态和对初级生产力的限制作用. 黄渤海海洋, 16 (3): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH803.009.htm [65] 王成善, 胡修棉, 李祥辉, 1999. 古海洋溶解氧与缺氧和富氧问题研究. 海洋地质与第四纪地质, 19 (3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ903.006.htm [66] 吴明清, Goodfellow, W. D., 王琨, 等, 1998. 贵州乐康二叠/三叠系界线剖面的有机碳同位素异常及其意义. 矿物学报, 18 (1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199801002.htm [67] 吴诒, 龚一鸣, 杜远生, 1997. 华南泥盆纪层序地层及海平面变化. 武汉: 中国地质大学出版社. [68] 许冰, 顾兆炎, 胡滨, 等, 2004. 广西上泥盆统F-F界线碳同位素的变化特征. 沉积学报, 22 (4): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200404007.htm [69] 许冰, 顾兆炎, 刘强, 等, 2003. 广西桂林垌村上泥盆统碳同位素正偏移于全球一致性的记录. 科学通报, 48 (8): 856-862. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200308021.htm [70] 章邦桐, 凌洪飞, 陈培荣, 2003. 多体系微量元素地球化学对比中存在的问题及解决途径. 地质地球化学, 31 (4): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200304016.htm