Tropical Process and Its Periodicity in the Deep Sea Records
-
摘要: 地球运行轨道参数包括偏心率、斜率和岁差, 在地质时期分别具有413ka和100ka、41ka、23ka和19ka的周期, 它决定地表太阳辐射在不同纬度和季节的周期性变化.太阳辐射变化中, 岁差周期最为明显, 斜率周期在中高纬度比较明显, 而偏心率周期本身作用微弱, 主要通过调控岁差周期的变幅影响气候.传统的地球轨道驱动理论认为, 北半球高纬的太阳辐射决定全球冰量和地表的气候变化, 轨道周期可能线性地反映到气候变化的周期中去.实际的深海记录反映的情况并非如此, 尤其在热带海区, 气候替代性指标的周期性与太阳辐射的周期性既存在相似性, 也存在较大区别.相似性在于, 热带海区的气候替代性指标均表现出较强的岁差和斜率周期, 而且通常情况下岁差周期的强度要高于斜率周期的强度, 说明热带海区的气候变化受控于岁差调控的太阳辐射的变化; 区别性在于, 热带海区气候替代性指标通常表现出较强的不容忽视的100ka、413ka的偏心率周期和10ka左右的半岁差周期, 而且100ka、413ka的偏心率周期还是季风系统的典型周期, 说明热带海区的气候变化并不是简单的线性响应太阳辐射的变化, 也不完全受北半球高纬的控制, 而是具有自身的特性.Abstract: The earth'sorbital geometry configurates eccentricity, obliquity and precession, which control the seasonal and latitudinal distribution of the insolation on the earth's surface. In the periodic variations of the insolation, the precession cycles of 23 ka and 19 ka are significant at any latitude, and the obliquity cycle of 41 ka is evident only at high and middle latitudes, whereas the eccentricity cycles of 413 ka and 100 ka are nearly faint at any latitude. The traditional orbital theory emphasizes the insolation at high northern latitudes which controls global ice volume and climate change and probably transfers its periodicity to the linear climate system. However, the periodicity of the climatic proxies from the tropics is not identical to that of the insolation. Both the insolation and the tropical process perform strong precession and less strong obliquity cycles, highlighting the dominant control of the precession modulated insolation on the tropical climatic changes. Nevertheless, the tropical process especially the monsoon system commonly performs strong eccentricity cycles of 100 ka and 413 ka, as well as significant semi-precession cycles around 10 ka, which are nearly absent in the insolation. These features indicate that the non-linear tropical climatic process doesn't simply respond to the insolation change, nor is completely controlled by the high northern latitudes, but possesses feature of its own.
-
Key words:
- tropical process /
- periodicity /
- deep sea records.
-
图 1 0~420 ka; (a) 北纬65°夏季太阳辐射(Berger and Loutre, 1991); (b) 南极大气δ18O (Petit et al., 1999)
Fig. 1. 0-420 ka; (a) N65° summer insolation; (b) Vostok atmosphere δ18O
图 4 南海ODP1144站0~400 ka孢粉谱中草本植物(Herbs) 和松粉(Pinus) 百分含量的频谱
图中数字代表周期, 单位ka (Sun et al., 2003)
Fig. 4. Spectrum of Herbs and Pinus percentage at ODP Site 1144 in the South China Sea (0-400 ka)
图 5 0~2 Ma; (a) 北纬30°夏季太阳辐射; (b) 北纬30°夏季太阳辐射高值部分; (c) 北纬30°夏季太阳辐射的频谱; (d) 北纬30°夏季太阳辐射高值部分的频谱
太阳辐射据Berger and Loutre (1991), 图中数字代表周期, 单位ka
Fig. 5. 0-2 Ma; (a) N30° summer insolation; (b) Warm part of N30° summer insolation; (c) Spectrum of N30° summer insolation; (d) Spectrum of the warm part of N30° summer insolation
图 6 (a) 北纬30°夏季太阳辐射的高值部分(0~5 Ma); (b) 热带大西洋ODP659站风尘记录(0~5 Ma); (c) 北纬30°太阳辐射的高值与ODP659站的风尘记录的交叉频谱
图中双向箭头表示主要的轨道周期和拍频周期以及两者在此周期上高度相关; (c) 中的数字代表周期, 单位ka
Fig. 6. (a) Warm part of N30° summer insolation (0-5 Ma); (b) Eolian percentage at ODP Site 659 in the tropical Atlantic (0-5 Ma); (c) Cross spectrum of the warm part of N30° summer insolation and the eolian percentage at ODP Site 659
-
[1] Beaufort, L., De Garidel-Thoron, T., Mix, A., et al., 2001. ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science, 293: 2440-2444. doi: 10.1126/science.293.5539.2440 [2] Beaufort, L., Lancelot, L. Y., Camberlin, P., et al., 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278: 1451-1454. doi: 10.1126/science.278.5342.1451 [3] Berger, A., Loutre, M. F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10: 297-317. doi: 10.1016/0277-3791(91)90033-Q [4] Broecker, W. S., 1991. The great ocean conveyor belt. Oceanography, 4: 79-89. doi: 10.5670/oceanog.1991.07 [5] Cane, M., 1998. A role for the tropical Pacific. Science, 282: 59. doi: 10.1126/science.282.5386.59 [6] Cane, M., Evans, M., 2000. Do the tropics rule? Science, 290: 1107-1108. [7] Clement, A., Seager, R., Cane, M., 1999. Orbital controls onthe El Nino/southern oscillation and the tropical climate. Paleoceanography, 14: 441-456. doi: 10.1029/1999PA900013 [8] CLIMAP Project Members, 1976. The surface of the ice-ageearth: Quantitative geological evidence is used to reconstruct boundary conditions for the climate 18000 yearsago. Science, 191: 1131-1137. doi: 10.1126/science.191.4232.1131 [9] Ding, Z. L., Yu, Z. W., Rutter, N. W., et al., 1994. Towardan orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 13: 39-70. doi: 10.1016/0277-3791(94)90124-4 [10] Hays, J. D., Imbrie, J., Shackleton, N. J., 1976. Variations in the earth sorbit: Pacemaker of the ice ages. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121 [11] Imbrie, J., Hays, J. D., Martinson, D. G., et al., 1984. The orbitaltheory of Pleistocene climate: Support froma revised chro-nology of the marine18Orecord. In: Berger A., ed., Milanko-vitch and climate. D. Reidel, Norwell, Mass. , 269-305. [12] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact ofLate Quaternary equatorial Pacific sea surface tempera-ture variations. Science, 289: 1719-1724. doi: 10.1126/science.289.5485.1719 [13] Lourens, L. J., 1994. Astronomical forcing of Mediterranean climate during the last 5.3 million years[Dissertation]. Utrecht University, Netherlands, 247. [14] Medina-Elizalde, M., Lea, D. W., 2005. The Mid-Pleistocenetransition in the tropical Pacific. Science, 310: 1009-1012. doi: 10.1126/science.1115933 [15] Milankovitch, M., 1930. Mathematische Kli malehre und as-tronomishe Theorie der Kli masch-wankungen. In: Kop-pen, W., Geiger, R., eds., Handbuch der Kli matologie. Gebruder Borntraeger, Berlin, Ⅰ (A), 1-76. [16] Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate andat mospheric history of the past420000years from the Vostokice core, Antarctica. Nature, 399: 429-436. doi: 10.1038/20859 [17] Pflaumann, U., Sarnthein, M., Chapman, M., et al., 2003. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP2000. Paleoceanography, 18 (3): 1065, doi: 10.1029/2002PA000774. [18] Pisias, N. G., Mix, A. C., 1997. Spatial and temporal oceano-graphic variability of the eastern equatorial Pacific during the Late Pleistocene: Evidence from Radiolarian microfossils. Paleoceanography, 12: 381-393. doi: 10.1029/97PA00583 [19] Ravelo, A., Shackleton, N. J., 1995. Evidence for surface-water circulation changes at Site 851 in the easterntropical Pacific Ocean. Proc. ODP Sci. Results, 138: 503-514. [20] Rich, J. J., Hollander, D., Birchfield, G. E., 1999. Role of regional bioproductivity in at mospheric CO2 changes. Global Biogeochem. Cycles, 13: 531-553. doi: 10.1029/1998GB900023 [21] Ruddiman, W. F., 2000. Earth s climate: Past and future. W. H. Freeman and Company, New York, 174-192. [22] Rutherford, S., Hondt, S. D., 2000. Early onset and tropical forcing of 100000 year Pleistocene glacial cycles. Nature, 408: 72-75. doi: 10.1038/35040533 [23] Short, D. A., Mengel, J. G., Crowley, T. J., et al., 1991. Filtering of Milankovitch cycles by earth s geography. Quaternary Research, 35: 157-173. doi: 10.1016/0033-5894(91)90064-C [24] Sun, X. J., Luo, Y. L., Huang, F., et al., 2003. Deep-sea pollen fromthe South China Sea: Pleistocene indicators ofEast Asian monsoon. Marine Geology, 201: 97-118. doi: 10.1016/S0025-3227(03)00211-1 [25] Tian, J., Wang, P. X., Cheng, X. R., et al., 2004. Pleistoceneprecession forcing of the upper ocean structure varia-tions in the southern South China Sea. Progressin Natural Science, 4 (11): 1004-1009. [26] Tian, J., Wang, P. X., Cheng, X. R., et al., 2005. Establish-ment of the Plio-Pleistocene astronomical timescale ofODP Site1143, southern South China Sea. Earth Science—Journal of China University of Geosciences, 30 (1): 31-39 (in Chinese with English abstract). [27] Tiedemann, R., Sarnthein, M., Shackleton, N. J., 1994. As-tronomic timescale for the Pliocene Atlantic 18O anddust flux records from Ocean Drilling Program Site 659. Paleoceanography, 9: 619-638. doi: 10.1029/94PA00208 [28] Visser, K., Thunell, R. C., Stott, L., 2003. Magnitude andti ming of temperature change in the Indo-Pacific warmpool during deglaciation. Nature, 421: 152-155. doi: 10.1038/nature01297 [29] Weinelt, M., Vogelsang, E., Kucera, M., et al., 2003. Varia-bility of North Atlantic heat transfer during MIS2. Paleoceanography, 18 (3): 1071, doi: 10.1029/2002PA000772. [30] Willis, K. J., Kleczkowski, A., Briggs, K. M., et al., 1999. The role of sub-Milankovitch cli matic forcingin the ini-tiation of the northern hemisphere glaciation. Science, 285: 568-571. doi: 10.1126/science.285.5427.568 [31] Yan, X. H., Ho, C. R., Zheng, Q., et al., 1992. Temperatureand size variabilities of the western Pacific warm pool. Science, 258: 1643-1645. doi: 10.1126/science.258.5088.1643 [32] 田军, 汪品先, 成鑫荣, 等, 2005. 南海ODP1143站上新世至更新世天文年代标尺的建立. 地球科学——中国地质大学学报, 30 (1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501004.htm