• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深井地球物理长期观测的最新进展及其前景

    徐纪人 赵志新

    徐纪人, 赵志新, 2006. 深井地球物理长期观测的最新进展及其前景. 地球科学, 31(4): 557-563.
    引用本文: 徐纪人, 赵志新, 2006. 深井地球物理长期观测的最新进展及其前景. 地球科学, 31(4): 557-563.
    XU Ji-ren, ZHAO Zhi-xin, 2006. Advances and Prospects for Long-Term Geophysical Observation in Deep Borehole. Earth Science, 31(4): 557-563.
    Citation: XU Ji-ren, ZHAO Zhi-xin, 2006. Advances and Prospects for Long-Term Geophysical Observation in Deep Borehole. Earth Science, 31(4): 557-563.

    深井地球物理长期观测的最新进展及其前景

    基金项目: 

    国家重点基础研究发展计划“973”项目 2003CB716505

    国家自然科学基金项目 40399141

    详细信息
    • 中图分类号: P631.81

    Advances and Prospects for Long-Term Geophysical Observation in Deep Borehole

    • 摘要: 地球科学是以观测为基础的科学.当前, 如何克服城市化、工业化、现代化发展带来的噪音干扰, 提高观测的信噪比, 成为地球科学发展的重要课题之一.开展深井观测是解决地面噪音干扰的主要途径.近年来, 随着地球系统科学研究的深入以及解决环境、资源、防灾等科学问题的需求, 世界大陆、大洋科学钻探工程研究以及在钻孔深井内进行的地球物理长期观测得到飞速发展, 并取得了初步的观测研究成果.本文介绍了世界各国在深井长期观测方面的最新进展, 展示了中国大陆科学钻探工程在江苏东海现场开展深井地球物理综合观测的方案及其观测研究前景.东海深井长期观测站将成为中国第一个无地面干扰的综合性深井地震、地球物理实验观测站, 它是实现我国“入地”科学计划的重要基础, 将开创我国21世纪地球科学观测研究的崭新局面.

       

    • 图  1  对于同一个小地震(东京湾北部M2地震, 震源深度30 km), 浅井与深井观测站所记录的波形对比

      Fig.  1.  Comparison of seismic waves of same earthquake obtained at shollow (600 m) and deeper (2 750 m) boreholes

      图  2  东京湾地区的地震震源剖面对比

      右上与右下图分别用地面台网观测资料与增加深井观测后的台网观测资料作成

      Fig.  2.  Comparison of two profiles of epicentral distribution in Tokyo bay

      图  3  日本土歧市定林寺1 030 m深井长期观测站剖面示意图(a) 和深井数字小口径地球物理综合观测仪器(b)

      Fig.  3.  Schematic section of the long-term multiple geophysical observation at the 1 030 m depth borehole located at the Jyorinji of the Toki, Japan (a) and digital small-diameter multi-component instrument for deep borehole observation (b)

      图  4  日本屏风山深井地球物理观测站应变仪记录到的地球长周期自由震荡

      Fig.  4.  Long-periodic free oscillations of earth recorded by the strain meter of the geophysical observation for deep borehole located at the Byobusan, Japan

      图  5  深井用光纤式宽频地震仪(a) 及其在振动实验中的照片(b)

      Fig.  5.  Optically-linked broadband seismometer for borehole observations (a) and it's in testing on vibrating platform (b)

      图  6  中国大陆科学钻探(CCSD) 现场地质构造分布

      图中PP1、PP2、PP3分别为卫星孔的位置; 1.第四系; 2.第三纪玄武岩; 3.白垩纪盆地沉淀; 4.造山后未变质花岗岩; 5.含霓石角闪石二长花岗质片麻岩; 6.角闪黑云斜长花岗质片麻岩; 7.斜长(二长) 花岗质片麻岩; 8.含黑云母二长花岗质片麻岩; 9.钾长花岗质片麻岩; 10.表壳岩系; 11.榴辉岩和超基性岩; 12.剪切带或断层; 13.卫星孔; 14.主孔; HP belt.高压变质带; UHP belt.超高压变质带

      Fig.  6.  Simplified geological and tectonic map of the site of the Chinese Continental Scientific Drilling (CCSD)

    • [1] Araya, A., Takamori, A., Otake, Y., etal., 2005. Perform-ance of an optically-linked broadband seismometer for borehole observations. Abstracts of 2005 Japan Earth and Planetary Science Joint Meeting. S048-005.
      [2] Asai, Y., Okubo, M., Ishii, H., etal., 2005. Co-seismic strain-steps associated with the 2004 off the Kii Penin-sula earthquakes—Observed with Ishii-type borehole strainmeters and quartz-tube extensometers. Earth Planets Space, 57: 309-314.
      [3] Chavarria, J. A., Malin, P., Catchings, R. D., etal., 2003. A look inside the Andreas fault at Parkfield through verti-cal seismic profiling. Science, 302: 1746-1748.
      [4] Fukao, Y., Ishibashi, K., 1996. Damages caused by Osaka-Kobe-Awaji large earthquake and earthquake predic-tion. Iwanami Press, Tokyo (in Japanese).
      [5] Ishii, H., Asai, Y., Okubo, M., etal., 2005a. Development of deep borehole instruments for both multi-component obser-vation and in situ stress measurement, and some in teresting results obtained, 2005, Zisin 2. J. Seismo. Soc. Japan, 58: 1-14 (in Japanese with English abstract).
      [6] Ishii, H., Okubo, M., Asai, Y., etal., 2005b. New develop-ment of seismology by deep strain observations. Ab-stracts of 2005 Japan Earth and Planetary Science Joint Meeting, S098-005.
      [7] Ishii, H., Yamauchi, T., Asai, Y., etal., 2003. Continuous multi-component monitoring of crustal activities by anewly developed instrument installed in a 1200 m depthborehole—The deepest multiple observation in the world consisting of stress, strain, tilt, seismicwave, geomegnetism, temperature. IUGG2003Poster, Sappo-ro, Japan.
      [8] Katao, H., Ando, M., 1996. Crustal movement before and af-ter the Hyogo-ken Nanbu earthquake. Science, 66: 78-85 (in Japanese with English abstract).
      [9] Ogasawara, H., Sato, S., Nishii, N., etal., 2000. Semi-controlled seismogenic experiments in South African deep gold mines. The South African Institute of Min-ing and Metallurgy Symposium Series, s27: 293-300.
      [10] Okubo, M., Asai, Y., Aoki, H., etal., 2005. The seismologi-cal and geodetical roles of strain seismogram suggested from the 2004 off the Kii peninsula earthquakes. Earth Planets Space, 57: 303-308.
      [11] Okubo, M., Ishii, H., Yamauchi, T., 2004. The 2003 Yoca-chi-oki Earthquake, observed by borehole strainmeterarray—Comparison with broadband seismogram, Zisin2. J. Seismo. Soc. Japan, 57: 105-113 (in Japanese with Englishabstract).
      [12] Tu, Y. M., Chen, Y. T., 2002. The accurate location of the injection-induced microearthquakes in German Continental Deep Drilling Program. Acta Seismologica Sinica, 15 (6): 616-627 (in Chinese with English abstract).
      [13] Utsu, T., Shima, E., Yoshii, K., 1996. Encyclopaedia of earthquakes. Asakura Press, Tokyo, 456-466.
      [14] Wang, Z. W., Liu, J. H., Li, Z. B., etal., 1999. KTB deep crustal Lab. World Geology, 18 (4): 96-99.
      [15] Xu, J. R., Yang, W. C., Zhao, Z. X., etal., 2003. Three-dimensional velocity structures of the Sulu-Dabie orogenbelt. Acta Geologica Sinica, 77 (4): 577-582 (in Chinese with English abstract).
      [16] Xu, J. R., Zhao, Z. X., 2004. Regional structure characteristics of crustal root of mountain beneath the Sulu orogenic belt. Acta Petrologica Sinica, 20 (1): 149-156 (in Chinese with English abstract).
      [17] Xu, J. R., Zhao, Z. X., Ishii, H., etal., 2006. Multiple geophysical observations by a newly developed multi-component borehole instrument at the Continental Deep Drilling Site of the CCSD, Donghai, China. Aproposal to ICDP.
      [18] Xu, Z. Q., 2004. The scientific goals and investigation progresses of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20 (1): 1-8 (in Chinese with English abstract).
      [19] Xu, Z. Q., Yang, W. C., Cong, B. L., etal., 1998. Drilling operations in the Dabie-Sulu UHPM Belt, East China. Aproposal to ICDP.
      [20] Zhao, Z. X., Xu, J. R., Yang, W. C., etal., 2004. Simulations of reflection seismic profile of borehole area of Chinese Continental Scientific Drilling. Acta Petrologica Sinica, 20 (1): 139-148 (in Chinese with English abstract).
      [21] Zoback, M. D., Apel, R., Baumgartner, J., etal., 1993. Uppercrustal strength inferred from stress measurements to 6 km depthin the KTB borehole. Nature, 365: 633-634.
      [22] Zoback, M. D., Hickman, S. H., Ellsworth, W. L., 1998. Scientific Drilling into the San Andreas fault at Parkfield, CA: Project overview and operational plan. A proposal to National Science Foundation.
      [23] Zoback, M. D., Hickman, S. H., Ellsworth, W. L., 2004. SanAndreas fault observatory at depth (SAFOD). A proposal to ICD.
      [24] 涂毅敏, 陈运泰, 2002. 德国大陆超深钻井注水诱发地震的精确定位. 地震学报, 24 (6): 587-598.
      [25] 王祝文, 刘菁华, 李舟波, 等, 1999. KTB深部地壳实验室. 世界地质, 18 (4): 96-99.
      [26] 徐纪人, 杨文采, 赵志新, 等, 2003. 苏鲁大别造山带岩石圈三维P波速度结构特征. 地质学报, 77 (4): 577-582.
      [27] 徐纪人, 赵志新, 2004. 苏鲁造山带区域地壳山根结构特征. 岩石学报, 20 (1): 149-156.
      [28] 许志琴, 2004. 中国大陆科学钻探工程的科学目标及初步成果. 岩石学报, 20 (1): 1-8.
      [29] 赵志新, 徐纪人, 杨文采, 等, 2004. 中国大陆科学钻探孔区反射地震剖面的数值模拟与分析. 岩石学报, 20 (1): 139-148.
    • 加载中
    图(6)
    计量
    • 文章访问数:  3463
    • HTML全文浏览量:  117
    • PDF下载量:  5
    • 被引次数: 0
    出版历程
    • 收稿日期:  2006-04-09
    • 刊出日期:  2006-07-25

    目录

      /

      返回文章
      返回