Lithology Determination of Rocks from CCSD 100-2 000 m Main Hole by Magnetic Susceptibility and Density Using Discriminant Function Analysis
-
摘要: 为查明磁化率和密度对于中国大陆科学钻探工程(CCSD) 主孔100~2 000 m岩性的响应和判别特征, 利用SPSS10.0统计分析软件进行了判别分析.研究结果显示, 岩石的密度和体积磁化率主要受岩性的控制.采用迫入法建立全模型, 对CCSD主孔100~2 000 m井段岩心的岩性判别率达84.8%.其中, 蛇纹石化橄榄岩、正片麻岩、副片麻岩、榴辉岩、角闪岩和退变质榴辉岩的判别率分别为100%、87.1%、89.7%、89.6%、96.7%和63.7%.该研究表明, 密度和磁化率可以为超高压变质岩石的岩性鉴别和区分提供定量约束, 有利于地球物理探测成果和测井资料的准确解析.同时, 本文也是SPSS统计分析软件在超高压变质岩石类型判别方面的一个应用实例, 对于其他岩石类型的判别分析具有借鉴意义.Abstract: Magnetic susceptibility (κ) and density (ρ) were measured at 5.7 m depth intervals on drill cores from the main hole of the Chinese Continental Scientific Drilling (CCSD) Project. We analyzed the data by discriminant analysis employing SPSS 10.0 for Windows to test whether the lithology can be distinguished by petrophysical parameters. The density and magnetic susceptibility of the CCSD 100-2 000 m main hole are mainly controlled by the lithology. Lithology discriminant functions were constructed by means of the Enter Independents Together method. The results show that the total discriminant rate is 84.8%, while the rates of the serpentinized peridotite, orthogneiss, paragneiss, eclogite, amphibolite and retrograded eclogite are 100%, 87.1%, 89.7%, 89.6%, 96.7% and 63.7%, respectively. This research confirms that the petrophysical parameters of magnetic susceptibility and density can provide quantity constraints for the lithology discrimination of ultrahigh-pressure (UHP) rocks. Furthermore, it throws some light on the lithology determination, and may be useful in improving the interpretations of geophysical surveying and well logging.
-
图 1 秦岭-大别-苏鲁造山带地质简图及CCSD钻孔位置(Xu et al., 1998)
Fig. 1. Simplified geological map of Qinling-Dabie-Sulu orogen, and the drilling site of CCSD
表 1 密度ρ和磁化率对数值logκ的岩性分类统计结果
Table 1. Logarithmic magnetic susceptibility (logκ) and density (ρ) of different rock types
表 2 CCSD主孔100~2 000 m岩心岩性判别分析结果
Table 2. Lithological classification results by discriminant analysis for the cores from the CCSD 100-2 000 m main hole
-
[1] Berckhemer, H., Rauen, A., Winter, H., et al., 1997. Petro physical properties of the 9 km deep crustal section at KTB. J. Geophys. Res., 102(B8): 18337-18362. doi: 10.1029/96JB03396 [2] Emmeimman, R., Lauterjung, J., 1997. The German Continental Deep Drilling Program KTB: Overview and major result. J. Geophys. Res., 102(B8): 18179-18201. doi: 10.1029/96JB03945 [3] Jin, Z.M., Ou, X.G., Xu, H.J., et al., 2004. Elastic wave velocities of the 2 000 m depth at Chinese Continental Scientific Drilling: Constraints on deep seismic reflection. Acta Petrologica Sinica, 20(1): 81-96(in Chinese with English abstract). [4] Kozlovsky, Y. A., 1987. The super-deep well of the Kola peninsula. Spinger, Berlin. [5] Liu, F.L., Xu, Z.Q., Yang, J.S., et al., 2004. Geochemical characteristics and UHP metamorphism of granitic gneisses in the main drilling hole of Chinese Continental Scientific Drilling Project and its adjacent area. Acta Petrologica Sinica, 20(1): 9-26(in Chinese with English abstract). [6] Liu, Q.S., Liu, Q.S., Zhang, Z.M., et al., 2004. Serpentinized peridotite as source of aeromagnetic anomalies. Journal of China University of Geosciences, 15(4): 416-419. [7] Niu, Y.X., Pan, H.P., Wang, W.X., et al., 2004. Geophysical well logging in main hole(0-2 000 m)of Chinese Continental Scientific Drilling. Acta Petrologica Sinica, 20(1): 165-178(in Chinese with English abstract). [8] Ou, X.G., Jin, Z.M., Xia, B., et al., 2005. Correlations between petrophysical properties of ultra-high pressure rocks and its significance on establishing the geophysical interpretation standards for crystalline rocks. Acta Petrologica Sinica, 21(3): 1005-1014(in Chinese with English abstract). [9] Paul, B.T., Jafar, A.H., Stephen, E.H., 1990. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model. Physics of the Earth and Planetary Interiors, 65(1-2): 137-157. doi: 10.1016/0031-9201(90)90082-9 [10] Rauen, A., Soffel, H.C., Winter, H., 2000. Statistical analysis and origin of the magnetic susceptibility of drill cuttings from the 9.1 km deep KTB drill hole. Geophysical Journal International, 142(1): 83-94. [11] Wang, S.B., Zhang, H.T., Shao, Q.Q., et al., 2003. SPSS professional statics. Mechanical Engineering Press, Beijing(in Chinese). [12] Xu, H.J., Jin, Z.M., Ou, X.G., et al., 2004. Effects of retrogression of ultrahigh-pressure eclogites on magnetic susceptibility and anisotropy. Earth Science—Journal of China University of Geosciences, 29(6): 674-684(in Chinese with English abstract). [13] Xu, J., Chen, Y. C., Wang, D. H., et al., 2004. Titanium mineralization in the ultrahigh-pressure metamorphic rocks from Chinese Continental Scientific Drilling 100-2 000 m main hole. Acta Petrologica Sinica, 20(1): 119-126(in Chinese with English abstract). [14] Xu, Z.Q., 2004. The scientific goals and investigation progresses of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20(1): 1-8(in Chinese with English abstract). [15] Xu, Z.Q., Yang, W.C., Zhang, Z.M., et al., 1998. Scientific significance and site-selection researches of the first Chinese Continental Scientific Deep Drillhole. Continental Dynamics, 3: 1-13. [16] Yang, W. C., 2002. Geophysical profiling across the Sulu ultrahigh-pressure metamorphic belt, eastern China. Tectonophysics, 354: 277-288. doi: 10.1016/S0040-1951(02)00386-4 [17] You, Z.D., Su, S.G., Liang, F.H., et al., 2004. Petrography and metamorphic deformational history of the ultrahigh-pressure metamorphic rocks from the 100-2 000 m core of Chinese Continental Scientific Drilling, China. Acta Petrologica Sinica, 20(1): 43-52(in Chinese with English abstract). [18] Yu, Q.F., Guo, Y.Z., Meng, X.H., et al., 2002. Petrophysical parameters at Continental Scientific Drilling site in Subei, China. Chinese J. Geophys., 45(1): 93-100(in Chinese with English abstract). [19] Yu, Q.F., Yao, C.L., Meng, X.H., et al., 2001. Interpretation of gravity and magnetic anomalies obtained at Continental Scientific Drilling site in Subei. Chinese J. Geophys., 44(6): 825-832(in Chinese with English abstract). [20] Zhang, R.Y., Liou, J.G., Zheng, Y.F., et al., 2003. Transition of UHP eclogites to gneissic rocks of low amphibolite facies during exhumation: Evidence from the Dabie terrane, central China. Lithos, 70: 269-291. doi: 10.1016/S0024-4937(03)00102-6 [21] Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2002. Composition and metamorphism of the root of the southern Sulu orogen. Geological Bulletin of China, 21(10): 609-616(in Chinese with English abstract). [22] Zhang, Z.M., Xu, Z.Q., Liu, F.L., et al., 2004. Geochemistry of eclogites from the main hole(100-2 050 m)of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20(1): 27-42(in Chinese with English abstract). [23] Zhao, P.D., Wei, M., Li, Z.J., et al., 1990. Statistical analysis of geological exploration. China University of Geosciences Press, Wuhan(in Chinese). [24] 金振民, 欧新功, 徐海军, 等, 2004. 中国大陆科学钻探主孔100~ 2 000 m岩石弹性波速度: 对地震深反射的约束. 岩石学报, 20(1): 81-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401006.htm [25] 刘福来, 许志琴, 杨经绥, 等, 2004. 中国大陆科学钻探主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用的识别. 岩石学报, 20(1): 9-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401001.htm [26] 牛一雄, 潘和平, 王文先, 等, 2004. 中国大陆科学钻探主孔(0~ 2 000 m)地球物理测井. 岩石学报, 20(1): 165-178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401014.htm [27] 欧新功, 金振民, 夏斌, 等, 2005. 超高压变质岩物理性质的相关性对建立结晶岩区地球物理解释标尺的意义. 岩石学报, 21(3): 1005-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503040.htm [28] 王苏斌, 郑海涛, 邵谦谦, 等, 2003. SPSS统计分析. 北京: 机械工业出版社. [29] 徐海军, 金振民, 欧新功, 等, 2004. 超高压榴辉岩退变质作用对岩石磁化率的影响. 地球科学———中国地质大学学报, 29(6): 674-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406005.htm [30] 徐珏, 陈毓川, 王登红, 等, 2004. 中国大陆科学钻探主孔100~ 2 000 m超高压变质岩中的钛矿化. 岩石学报, 20(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401009.htm [31] 许志琴, 2004. 中国大陆科学钻探工程的科学目标及初步成果. 岩石学报, 20(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401000.htm [32] 游振东, 苏尚国, 梁凤华, 等, 2004. 中国大陆科学钻探主孔100~ 2 000 m超高压变质岩岩相学特征与变质变形史. 岩石学报, 20(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401003.htm [33] 余钦范, 郭友钊, 孟小红, 等, 2002. 苏北大陆科学钻探靶区岩石物理性质. 地球物理学报, 45(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200201011.htm [34] 余钦范, 姚长利, 孟小红, 等, 2001. 苏北大陆科学钻探靶区重磁异常反演解释. 地球物理学报, 44(6): 825-832. doi: 10.3321/j.issn:0001-5733.2001.06.012 [35] 张泽明, 许志琴, 刘福来, 等, 2002. 南苏鲁造山带根部的物质组成及变质作用. 地质通报, 21(10): 609-616. doi: 10.3969/j.issn.1671-2552.2002.10.003 [36] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100~ 2 050 m)榴辉岩岩石化学研究. 岩石学报, 20(1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm [37] 赵鹏大, 魏民, 李紫金, 等, 1990. 地质勘探中的统计分析. 武汉: 中国地质大学出版社.