In-Situ Stress State in the Main Borehole of the Chinese Continental Scientific Drilling
-
摘要: 用钻孔崩落法确定了中国大陆科学钻探主钻孔5 047 m深度以上的现今地应力状态.由钻孔声波成像测井资料发现, 科学钻主钻孔在1 200 m深度以下出现了钻孔崩落现象.我们从1 216~5 047 m的深度范围内采集了143个钻孔成像测井图象资料, 对钻孔崩落椭圆长轴方位进行了统计, 结果表明崩落椭圆长轴平均方位为319.5°±3.5°, 最大水平主应力方位平均为49.5°±3.5°.利用崩落形状要素(崩落深度和崩落宽度) 以及岩石的内聚力和内摩擦角, 估算了1 269 m至5 047 m范围内52个深度上的最大和最小水平主应力的大小.结果表明, 在浅处1 216 m深度, 最大水平主应力为42 MPa, 最小水平主应力为30.3 MPa; 在深处5 000 mm深度, 最大水平主应力为160.5 MPa, 最小水平主应力为120 MPa; 地应力随深度近于线性增加.据岩石密度测井资料计算了各个深度上静负载应力.3个主应力的大小和方向反映出科学钻主孔位置的应力场处于走滑应力状态, 与临近地区地震震源机制解和其他方法得到的应力场一致.利用声发射法对岩心试件进行了声发射测量, 得到了最大水平主应力幅值, 并与崩落法测量结果进行了对比, 两者十分一致.Abstract: The breakouts began to occur under the depth of 1 200 m in the main borehole of Chinese Continental Scientific Drilling (CCSD), 143 breakout images are collected from acoustic borehole televiewer data between 1 216 m and 5 047 m. The average orientation of breakouts is 319.5°±3.5°. The average orientation of maximum horizontal stress is 49.5°±3.5°. Using breakout parameters measured from borehole breakouts (depth and width of breakout) and rock cohesion and inner friction angle determined from triaxial rock compression and deformation tests, the magnitudes of principal stress are calculated at 52 different depths from 1 269 m to 5 047 m. Overburden stress is calculated using the density logging data. The magnitude of maximum principal stress is determined using acoustic emissions. A comparison of measurement results of acoustic emission and borehole breakouts is carried out, and the results from the two methods are in good agreement. According to the orientations and magnitudes of three principal stresses, stress state (SH > Sv > Sh) in the area of CCSD indicates the strike-slip stress regime and is coincident with the strike-slip stress field observed from earthquake focal plane mechanisms.
-
图 6 中国大陆科学钻探(CCSD) 主孔位置及及钻孔崩落和震源机制解显示的应力格局示意图(钻孔附近地区的地应力资料源于Zoback et al., 1992)
BO为钻孔崩落指示的最大主应力方向; SS、TF、NF为震源机制解指示的最大主应力方向和应力格局; SS为走滑断层作用; TF为逆冲断层作用; NF正断层作用
Fig. 6. Sketch map for the location of Chinese Continental Scientific Drill (CCSD) and stress regime indicated by breakouts and earthquake focal mechanisms
表 1 最大和最小水平主应力的大小
Table 1. Magnitudes of the maximum horizontal principle stress and minimum horizontal principle stress
表 2 声发射法测量结果
Table 2. Result of acoustic emission measurement
-
[1] Bell, J.S., Gough, D.I., 1979. Northeast-southwest compressive stress in Alberta— Evidence from oil wells. Earth and Planetary Sciences Letters, 45: 475-482. doi: 10.1016/0012-821X(79)90146-8 [2] Blumling, P., Fuchs, K., Schneider, T., 1983. Orientation of the stress field from breakouts in a crystalline well in a seismic active area. Phys. Earth Planet. Inter. , 33: 250-254. doi: 10.1016/0031-9201(83)90042-0 [3] Cui, J. W., Wang, L. J., Li, P. W., et al., 2004. Tectonic stress field of brittle deformation within 2 000 m of the main borehole of Chinese Continental Scientific Drilling. Acta Petrologica Sinica, 20(1): 73-80(in Chinese with English abstract). [4] Ding, Y. C., 1992. Rock stress measureament by the AE method and its application in mine. Coal Engineer, (4): 50-56(in Chinese with English abstract). [5] Ding, Y.C., Zhang, D. L., 1991. Application of the incomplete erasion phenomenon in acoustic emission activities to the measurement of geostresses. Chinese Journal of Rock Mechanics and Engineering, 10(4): 313-326(in Chinese with English abstract). [6] Gough, D.I., Bell, J.S., 1981. Stress orientations from oil well fractures in Alberta and Texas. Can. J. Earth Sci. , 18: 638-645. doi: 10.1139/e81-056 [7] Haimson, B.C., Herrick, C.G., 1986. Borehole breakouts A new tool for estimation in situ stress. Proceedings of the international sympossium on rock stress and rock stress measurements, Stockholm, 1-3, Sept. . [8] Hickman, S.H., Healy, J.H., Zoback, M.D., 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, Auburn, New York. Journal of Geophysics Research, 90: 5497-5512. doi: 10.1029/JB090iB07p05497 [9] Hua, A.J., Zhou, C.Y., Liu, X.L., 1997. Traced study on stress field region in Yishu fault zone and Cangshan earthquake of Ms 5.2. Journal of Seismology, (3): 18-23(in Chinese with English abstract). [10] Huber, K., Fuchs, K., Palmer, J., et al., 1997. Analysis of bore hole televiewer measurements in the Vorotilov drillhole, Russia— First results. Tectonophysics, 275(1-3): 261-272. [11] Jaeger, J.C., 1961. Elasticity, fracture and flow. Methuen, London, 212. [12] Li, P.W., Cui, J.W., Wang, L.J., et al., 2005. The determination of in-situ stress from wellbore breakouts in the main borehole of the Chinese Continental Scientific Drilling. Acta Petrologica Sinica, 21(2): 421-426(in Chinese with English abstract). [13] Liu, G.X., Ma, T.Z., Huang, P.Y., et al., 1989. Major active faults and their recent movement. In: Lithospheric dynamics atlas of China. China Cartographic Publishing House, Beijing(in Chinese). [14] Plumb, R.A., 1982. Breakouts in the geothermal well, Auburn, N.Y. . Eos Trans. AGU, 63: 1118. [15] Plumb, R. A., Hickman, S. H., 1985. Stress-induced hore hole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well. Journal of Geophysical Research, 90(B7): 5513-5521. doi: 10.1029/JB090iB07p05513 [16] Vernik, L., Zoback, M.D., 1992. Estimation of the maximum horizontal principal stress magnitude from stress induced wellbore breakout in the Cajon pass scientific research borehole. Journal of Geophysical Research, 97(b4): 5109-5119. doi: 10.1029/91JB01673 [17] Wang, L.J., Li, P.W., Cui, J.W., et al., 2005. The determination of in-situ stress in the main borehole of the Chinese Continental Scientific Drilling by using acoustic emission. Geology in China, 32(2): 259-264(in Chinese with English abstract). [18] Wang, L. J., Zhang, L. R., Wang, W., et al., 1993. Deep crustal stress measurement by borehole breakouts. In: Science papers on hydrogelogy, engineering geology and environmental geology. Seismological Press, Beijing, 63-69(in Chinese with English abstract). [19] Wang, X.F., Li, Z.J., Chen, B.L., et al., 2000. Tanlu fault zone. Geological Publishing House, Beijing, China(in Chinese). [20] Wang, Y.P., Deng, Q.D., Zhu, S.L., 1989. Lithospheric dynamics of North China. In: Lithospheric dynamics atlas of China. China Cartographic Publishing House, Beijing(in Chinese). [21] Xie, Z., Liu, Y.X., Hu, W.J., et al., 2002. The focal mechanism of earthquake in Henan and its adjacent region. Northwestern Seismological Journal, 24(3): 283-286(in Chinese with English abstract). [22] Yu, Y.X., Xu, Z.H., 1994. A study on orientations of horizontal principal stress in Jizhong depression using borehole break out data. Petroleum Exploration and Development, 21(2): 48-55(in Chinese with English abstract). [23] Yu, Y.X., Xu, Z.H., 1996. The inverse of the stress state of upper crust in Jizhong depression using borehole break out data from inclined well. Acta Seismologica Sinica, 18(2): 246-253(in Chinese with English abstract). [24] Zhou, C.Y., Jiang, Z.F., Wang, H.W., et al., 1994. Dynamic variation of stress field and seismic activity in juncture area of Jiangsu, Shandong and Yellow Sea. Seismo logical Research of Northeast China, 10(1): 10-17(in Chinese with English abstract). [25] Zoback, M.L., 1992. First and second-order patterns of stress in the lithosphere: The world stress map project. Journal of Geophysical Research, 97(B8): 11703-11728. doi: 10.1029/92JB00132 [26] Zoback, M.D., Moos, D., Mastin, L., et al., 1985. Well bore breakouts and in situ stress. Journal of Geophysical Research, 90(B7): 5523-5530. doi: 10.1029/JB090iB07p05523 [27] Zoback, M.L., Zoback, M.D., 1989. Tectonic stress field of the Continental United States. In: Paiser, L.C., Mooney, W.D., eds., Geophysical framework of the Continental United States: Boulder, Colorado. Geological Society of America Memoir, 172: 523-539. [28] 崔军文, 王连捷, 李朋武, 等, 2004. 中国大陆科学钻探主孔2 000 m以上脆性变形构造应力场. 岩石学报, 20(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401005.htm [29] 丁原辰, 1992. 矿区地应力状态声发射粗估法及其应用. 煤炭工程师, (4): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER199204010.htm [30] 丁原辰, 张大伦, 1991. 声发射抹录不净现象在地应力测量中的应用. 岩石力学与工程学报, 10(4): 313-326. doi: 10.3321/j.issn:1000-6915.1991.04.001 [31] 华爱军, 周翠英, 刘西林, 1997. 沂沭带应力场动态追踪研究与苍山5.1级地震. 地震学刊, (3): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK703.003.htm [32] 李朋武, 崔军文, 王连捷, 等, 2005. 中国大陆科学钻探主孔钻孔崩落与现场应力状态的确定. 岩石学报, 2(2): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502016.htm [33] 刘光勋, 马廷著, 黄佩玉, 等, 1989. 主要活动断裂及现今运动. 中国岩石圈动力学地图集. 北京: 中国地图出版社. [34] 王连捷, 李朋武, 崔军文, 等, 2005. 中国大陆科学钻探主孔声发射法现今地应力状态的确定. 中国地质, 32(2): 259-264. doi: 10.3969/j.issn.1000-3657.2005.02.009 [35] 王连捷, 张利容, 王薇, 等, 1993. 利用钻孔崩落法确定深部地应力状态. 工程地质, 水文地质, 环境地质论文集. 北京: 地震出版社, 63-69. [36] 王小风, 李中坚, 陈柏林, 等, 2000. 郯庐断裂带. 北京: 地质出版社, 322-331. [37] 汪一鹏, 邓起东, 朱世龙, 1989. 华北地区岩石圈动力学特征. 中国岩石圈动力学地图集. 北京: 中国地图出版社. [38] 谢智, 刘尧兴, 胡卫健, 等, 2002. 河南及邻区地震的震源机制. 西北地震学报, 24(3): 283-286. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200203016.htm [39] 俞言祥, 许忠淮, 1994. 用钻孔崩落法研究冀中坳陷水平主应力方向. 石油勘探与开发, 21(2): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK402.008.htm [40] 俞言祥, 许忠淮, 1996. 利用斜井钻孔崩落资料反演冀中坳陷上地壳应力状态. 地震学报, 118(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB602.012.htm [41] 周翠英, 姜早峰, 王红卫, 等, 1994. 苏鲁交界至南黄海地区应力场的动态变化与地震活动. 东北地震研究, 10(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ401.002.htm