• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铬尖晶石和石榴石的相变: 大陆科学钻探CCSD-PP3孔超镁铁岩超高压变质作用的证据

    陈世忠 杨经绥 许志琴 李天福 陈方远

    陈世忠, 杨经绥, 许志琴, 李天福, 陈方远, 2006. 铬尖晶石和石榴石的相变: 大陆科学钻探CCSD-PP3孔超镁铁岩超高压变质作用的证据. 地球科学, 31(4): 475-487.
    引用本文: 陈世忠, 杨经绥, 许志琴, 李天福, 陈方远, 2006. 铬尖晶石和石榴石的相变: 大陆科学钻探CCSD-PP3孔超镁铁岩超高压变质作用的证据. 地球科学, 31(4): 475-487.
    CHEN Shi-zhong, YANG Jing-sui, XU Zhi-qin, LI Tian-fu, CHEN Fang-yuan, 2006. Transformation of Chromium Spinel and Garnet: Evidence of CCSD-PP3 Ultramafic Rocks Processed UHP Metamorphism. Earth Science, 31(4): 475-487.
    Citation: CHEN Shi-zhong, YANG Jing-sui, XU Zhi-qin, LI Tian-fu, CHEN Fang-yuan, 2006. Transformation of Chromium Spinel and Garnet: Evidence of CCSD-PP3 Ultramafic Rocks Processed UHP Metamorphism. Earth Science, 31(4): 475-487.

    铬尖晶石和石榴石的相变: 大陆科学钻探CCSD-PP3孔超镁铁岩超高压变质作用的证据

    基金项目: 

    国家重点基础研究发展规划“973”项目 2003CB716503

    国家自然科学基金重大项目 40399143

    详细信息
      作者简介:

      陈世忠(1967 -), 男, 副研究员, 2002— 2004年中国地质科学院地质研究所博士后, 主要从事岩石学、矿物学和矿床学研究. E-mail: njcshizhong@cgs.gov.cn

    • 中图分类号: P588.12;P578.4

    Transformation of Chromium Spinel and Garnet: Evidence of CCSD-PP3 Ultramafic Rocks Processed UHP Metamorphism

    • 摘要: PP3超镁铁岩主要岩石类型有纯橄岩和石榴石橄榄岩,两者为渐变,主要矿物为橄榄石、铬尖晶石、石榴石、单斜辉石和斜方辉石.铬尖晶石的Cr#[Cr/(Cr+Mg) ×100]从51~89变化,TiO2和MnO2值分别低于0.26%和0.46%.铬尖晶石矿物表现为4期次演化的特点,反映了从岩浆期、榴辉岩相、角闪岩相和绿片岩相演化特征.随着超镁铁岩的演化,铬尖晶石表现为Cr#不断增大,而Mg#[Mg×100/(Mg+Fe2+) ]不断减少、氧逸度不断增加的过程.PP3铬尖晶石反映了地幔来源,为大陆岩石圈超镁铁岩特征,后期随折返而演化.从石榴石与铬尖晶石相互转变过程看出,PP3超镁铁岩经历了深度加大的过程,超镁铁岩曾经到达100km以上的岩石圈地幔深处.在绿片岩相-绿片角闪岩相变质过程中,铬尖晶石中Cr、Mg和Al减少,Fe相对增加,产生富Cr尖晶石变质作用样式.晚期剪切变形等次生变化影响了铬尖晶石矿物成分.

       

    • 图  1  石榴石橄榄岩(a)和(铬尖晶石) 纯橄榄岩(b)

      Fig.  1.  Garnet peridotite (a) and chromium spinel peridotite (b)

      2A  不同期次的铬尖晶石在岩石中的分布

      1.尖晶石呈条带状分布(单偏光); 2.B15R22P1尖晶石与镍黄铁矿(反射光); 3.石榴石与角闪石(单偏光); 4.铬尖晶石裂理(反射光); 5.橄榄石中尖晶石(单偏光); 6.尖晶石中石榴石(单偏光); 7.石榴石边部尖晶石和角闪石(反射光); 8.石榴石中部和边部尖晶石(单偏光)

      2A.  A Distribution of chromium spinels in different rocks

      2B  不同期次的铬尖晶石在岩石中的分布

      1.石榴石中尖晶石(SEM); 2.“排骨状”铬尖晶石(SEM); 3.斜方辉石出溶单斜辉石和尖晶石(SEM); 4.角闪石和尖晶石(SEM); 5.尖晶石与石榴石共生(SEM); 6.尖晶石中单斜辉石(SEM); 7.尖晶石的环状结构(SEM); 8.橄榄石外部的尖晶石(SEM)

      2B.  B Distribution of chromium spinels in different rocks

      2C  不同期次的铬尖晶石在岩石中的分布

      1.尖晶石的环状结构(SEM); 2.尖晶石的环状结构(SEM); 3.角闪石中尖晶石(SEM); 4.尖晶石边部金云母(单偏光); 5.劈理发育的蛇纹石中尖晶石(SEM); 6.被橄榄石交代的尖晶石(SEM); 7.尖晶石中橄榄石(单偏光); 8.尖晶石中单斜辉石(SEM)

      2C.  C Distribution of chromium spinels in different rocks

      图  3  铬尖晶石的Mg#-Cr#相关关系

      Fig.  3.  Chromite correlationship diagram of Mg# and Cr/(Cr+Al)

      图  4  铬尖晶石Mg#与Fe3+/(Fe3++Fe2+) 关系

      Fig.  4.  Chromite corelationship diagram of Mg# and Fe3+/(Fe3++Fe2+)

      图  5  铬尖晶石成分图解(a)和铬尖晶石Cr2O3与斜方辉石Al2O3关系(b)

      图a据Guillot et al., 2001;图b据Kepezhinskas and Defant, 1997

      Fig.  5.  Composition of chromium spinels (a) and diagram of Cr2O3 of chromium spinels and Al2O3 of orthopyroxene (b)

      图  6  橄榄石Mg#和铬尖晶石Cr#图解(Pearce et al., 2000)

      Fig.  6.  Plot of chromium spinel Cr# against olivine Mg# for the PP3 peridotites

      图  7  铬尖晶石Cr、Al和Fe3+含量与铬铁矿比较

      Fig.  7.  Chromium spinel compositions shown in Cr, Al and Fe3+ ternary diagram

      图  8  铬尖晶石矿物Cr#演化变化(据Klemme, 2004修改)

      Fig.  8.  Evolution of Cr# of PP3 chromium spinels

      图  9  PP3铬尖晶石化学蚀变样式示意图

      Fig.  9.  Chemical alteration patterns of the PP3 chromium spinel

      图  10  PP3铬尖晶石矿物组分变化

      Fig.  10.  Composition variation patterns of the PP3 chrome spinel

      图  11  PP3铬尖晶石TiO2与Cr#图解(Pearce et al., 2000)

      Fig.  11.  Diagram of TiO2 and Cr# of PP3 chrome spinel

      图  12  铬尖晶石矿物Cr#演化变化

      Fig.  12.  Evolutionary phase of Cr# of PP3 chromium spinels

      表  1  铬尖晶石电子探针分析结果

      Table  1.   Composition of chrome spinels

      表  2  32个氧原子时铬尖晶石分子式和参数

      Table  2.   Molecular formula and parameter of chrome spinels

    • [1] Abe, N., Arai, S., Saeki, Y., 1992. Hydration processes in the arc mantle: Petrology of the Megata peridotite xenoliths, the northeast Japan arc. Jour. Min. Petr. Econ. Geol. , 87: 305-317. doi: 10.2465/ganko.87.305
      [2] Arai, S., 1991. The Circum-Izu Massive peridotite, central Japan, as back-arc mantle fragments of the Izu-Bonin arc system. In: Peters, T. j., Nicolas, A., Coleman, R.G., eds., Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Dordrecht, 807-822.
      [3] Arai, S., 1992. Chemistry of chromium spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56: 173-184. doi: 10.1180/minmag.1992.056.383.04
      [4] Arai, S., 1994. Characterization of spinel peridotites by olivinespinel compositional relationships: Review and interpretation. Chemical Geology, 113: 191-204. doi: 10.1016/0009-2541(94)90066-3
      [5] Arai, S., Okada, H., 1991. Petrology of serpentine sandstone as a key to tectonic development of serpentine belts. Tectonophysics, 195: 65-81. doi: 10.1016/0040-1951(91)90144-H
      [6] Barnes, S.J., Roeder, P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. , 42: 2279-2302. doi: 10.1093/petrology/42.12.2279
      [7] Bloomer, S.H., Fisher, R.L., 1987. Petrology and geochemistry of igneous rocks from the Tonga Trench—A nonaccreting plate boundary. Journal of Geology, 95: 469-495. doi: 10.1086/629144
      [8] Chen, S.Z., Yang, J.S., Xu, Z.Q., et al., 2005. Petrology and mineralogy of PP3 ultramafic rocks in Sulu UHP belt and its significance. Acta Petrologica Sinica, 21(2): 369-380 (in Chinese with English abstract).
      [9] Cookenboo, H.O., Bustin, R.M., Wilks, K.R., 1997. Detrital chromium spinel compositions used to reconstruct the tectonic setting of provenance: Implications for orogeny in the Canadian Cordilera. Journal of Sedimentary Research, 67: 116-123.
      [10] Dick, H.J.B., Bullen, T., 1984. Chromium spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contribution to Mineralogy and Petrology, 86: 54-76. doi: 10.1007/BF00373711
      [11] Evans, B.W., Frost, B.R., 1975. Chrome-spinel in progressive metamorphism— A preliminary analysis. Geochimica et Cosmochimica Acta, 39: 957-972.
      [12] Green, D.H., Ringwood, A.E., 1967. The stability fields for aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet. Sci. Letters, 3: 151-160. doi: 10.1016/0012-821X(67)90027-1
      [13] Guillot, S., Hattori, K.H., Sigoyer, J.D., et al., 2001. Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and Planetary Science Letters, 193: 115-127. doi: 10.1016/S0012-821X(01)00490-3
      [14] Irvine, T.N., 1965, Chrome spinel as a petrogenetic indicator. Part Ⅰ. Theory. Can. Jour. Earth Science, 2: 648-674. doi: 10.1139/e65-046
      [15] Ishii, T., 1987. Seamounts and oceanic islands: Their classification, vertical movements and histories. Earth Monthly, 9: 542-549(in Japanese).
      [16] Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 61: 577-600. doi: 10.1016/S0016-7037(96)00349-3
      [17] Kepezhinskas, P.K., Defant, M.J., 1997. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta, 60: 1217-1229.
      [18] Klemme, S., 2004. The influence of Cr on the garnet-spinel transition in the Earth's mantle: Experiments in the system MgO-Cr2O3-SiO2and thermodynamic modelling. Lithos, 77(1-4): 639-646. doi: 10.1016/j.lithos.2004.03.017
      [19] Lee, Y.I., 1999. Geotectonic significance of detrital chromian spinel: A review. Geosciences Journal, 3(1): 23-29. doi: 10.1007/BF02910231
      [20] Nixon, P. H., 1987. Mantle xenoliths. Wiley, New York, 844.
      [21] Ozawa, K., 1994. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. J. Petrology, 35: 647-678. doi: 10.1093/petrology/35.3.647
      [22] O'Neill, H. St. C., 1981. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77: 185-194. doi: 10.1007/BF00636522
      [23] Pearce, J.A., Barker, P.F., Edwards, S.J., et al., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib. Mineral. Petrol. , 139: 36-53. doi: 10.1007/s004100050572
      [24] Press, S., 1986. Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish massif. Geologische Rundschau, 75: 333-340. doi: 10.1007/BF01820615
      [25] Roeder, P., 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J. Geol. , 82: 709-729. doi: 10.1086/628026
      [26] Roeder, P.L., 1994. Chromite: From the fiery rain of chondrules to the Kilauea Iki lava lake. Can. Mineral. , 32: 729-746.
      [27] Roeder, P.L., Campbell, I.H., 1985. The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana intrusion. Journal of Petrology, 26(3): 763-786. doi: 10.1093/petrology/26.3.763
      [28] Widom, E., Kepezhinskas, P., Defant, M., 2003. The nature of metasomatism in the sub-arc mantle wedge: Evidence from Re-Os isotopes in Kamchatka peridotite xenoliths. Chemical Geology, 196: 283-306. doi: 10.1016/S0009-2541(02)00417-5
      [29] Wood, B.J., Virgo, D., 1989. Upper mantle oxidation state: Ferric iron contents of harzburgite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta, 53: 1277-1291. doi: 10.1016/0016-7037(89)90062-8
      [30] Yang, J.S., Chen, S.Z., Zhang, Z.M., et al., 2005. A preliminary study of the Chinese Continental Scientific Drilling (CCSD)PP3 hole on the Gangshang garnet peridotite body in the Sulu UHPM belt. Acta Petrologica Sinica, 21(2): 293-304(in Chinese with English abstract).
      [31] Yang, J.S., Xu, Z.Q., Pei, X.Z., et al., 2002. Discovery of diamond in North Qinling: Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica, 76(4): 484-495.
      [32] Yang, J.S., Xu, Z.Q., Song, S.G., et al., 2000. Discovery of eclogite in Dulan, Qinghai Province and its significance for the HP-UHP metamorphic belt along the central orogenic belt of China. Acta Geologica Sinica, 74: 156-168.
      [33] 陈世忠, 杨经绥, 许志琴, 等, 2005. 大陆科学钻探CCSD-PP3钻孔超镁铁岩岩石学和矿物学特征及其意义. 岩石学报, 21(2): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502010.htm
      [34] 杨经绥, 陈世忠, 张仲明, 等, 2005. 苏鲁超高压变质带岗上石榴石橄榄岩岩体: 中国大陆科学钻探卫星孔(CCSDPP3钻孔)初步研究. 岩石学报, 21(2): 293-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502004.htm
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  3614
    • HTML全文浏览量:  97
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2006-06-02
    • 刊出日期:  2006-07-25

    目录

      /

      返回文章
      返回