Petrogenesis of the Zhimafang Ultramafic Body in the Sulu Ultrahigh Pressure Metamorphic Belt: CCSD-PP1 Core Study
-
摘要: 苏鲁超高压变质带(UHP)中的芝麻坊超基性岩体是一个不寻常的地幔岩块,由高度亏损的橄榄岩组成,因地幔交代作用而富集REE和LILE.岩体由交替出现的石榴石橄榄岩和不含石榴石橄榄岩层组成.2种类型的岩石具有许多共同的成分特征,并在相同的温压p-T条件下形成.岩石记录了数期地质事件,但没有进变质作用的证据.平衡矿物对计算出的p-T条件为6~7GPa.发生在中元古代的部分熔融的差异造成了互层状的2种岩石类型.橄榄岩中锆石220Ma的U—Pb同位素年龄记录了扬子板块和北中国板块碰撞,但此年龄也许并不代表岩石UHP变质峰期的年龄,而可能记录了俯冲带中地幔楔的碎块从深部折返时的年龄.我们认为石榴石可能不是由于俯冲变质作用形成,有可能是岩石从地幔深部上升过程中从斜方辉石中出溶而成。Abstract: The Zhimafang ultramafie body in the Sulu ultrahigh pressure (UHP) metamorphic belt is a block of unusual mantle composed of highly depleted peridotite,which has been enriched in REE and LILE by metasomatism. It consists of interlayered garnet peridotite and garnet-free peridotite,which have many common compositional features and formed under the same p-T conditions. The rocks record several geological events; however,evidence of progressive metamorphism has not been confirmed. Calculated p-T conditions from equilibrium mineral pairs suggest pressures of 6-7 GPa. Partial melting of the sequence in the Mesoproterozic was probably responsible for the interlayering of the two rock types. AU-Pb zircon age of 220 Ma records the collision between Yangtze and North China blocks,but this age may not represent the time of peak UHP metamorphism. More likely,it records exhumation of the block from the deep portion of the subduction zone. The available data suggest that the garnet was exsolved from enstatite as rocks rose from the deep mantle.
-
Key words:
- garnet peridotite /
- Sulu /
- CCSD /
- UHP metamorphism /
- mantle
-
图 1 南苏鲁地区简化地质图(a); 芝麻坊超镁铁岩体和中国大陆科学钻探CCSD-PP1钻孔位置(b); PP1钻孔主要岩性单元的简化柱状图(c); 石榴石橄榄岩的岩心照片(d)
Fig. 1. A simplified geological map of the southern Sulu region(a); profile of the Zhimafang ultramafic body and location of the PP1 drillhole of the Chinese Continental Scientific Drilling(CCSD)(b); a simplified column of the main li- thological units of the PP1(c); and a photograph of the garnet peridotite core(d)
图 3 石榴石橄榄岩和不含石榴石橄榄岩的显微照片
a.石榴石方辉橄榄岩(C21-134-55):等粒结构, 石榴石在空间上与Opx伴生, 甚至很小的颗粒(见箭头); b.石榴石方辉橄榄岩(C34-151- 74): 石榴石变斑晶中橄榄石包体; c.石榴石方辉橄榄岩(C27-144-63): 小颗粒的Grt、Opx和Ol作为粗粒Ol之间的空隙充填物; d.石榴石方辉橄榄岩(C25-141-60): 空间伴生的Grt、Opx和铬铁矿; e.纯橄岩(C31-147-68): 无形变的等粒结构; f.方辉橄榄岩(C37-154-78): 粗粒Ol和Opx的嵌晶结构和弱定向; g.纯橄岩(C36-153-77): 粗粒Ol间充填的小Ol; h.石榴石金云母脉(C28-145-65): 变斑晶石榴石和金云母片是岩石中仅有的矿物, 石榴石有蚀变边
Fig. 3. Microphotographs of garnet peridotite and garnet-free peridotite
图 4 K2O、Al2O3、MgO、NiO、FeO、Cr2O3、SiO2与MgO+< FeO>的变异图(a—h), 石榴石橄榄岩较不含石榴石橄榄岩有相对高的Al2O3、CaO、SiO2和低的MgO以及含量相同的Cr2O3和NiO; 2种岩石均显示球粒状陨石标准化LREE富集模式, 但石榴石橄榄岩的REE丰度要高于不含石榴石橄榄岩(i, j)
Fig. 4. K2O, Al2O3, MgO, NiO, FeO, Cr2O3, SiO2vs. MgO+< FeO> diagrams(a-h)clearly separate Grt-peridotite from GF-peridotite by higher Al2O3, CaO and SiO2, and lower MgO, and similar contents of Cr2O3and NiO; both show chondrite-normalized LREE enriched patterns, but the REE abundance of Grt-peridotite are higher than that of GF-peridotite(i, j)
图 8 石榴石橄榄岩中变斑晶石榴石(Lg-Grt)和等粒石榴石(Sm-Grt)的组分是变化的, Sm-Grt比Lg-Grt有相对高的Cr2O3和相对低的Al2O3、MgO、SiO2含量
Fig. 8. Compositions of porphyroblastic garnet(Lg-Grt) and equigranular garnet(Sm-Grt)in Grt-peridotite are varied, the Sm-Grt have relatively higher contents of Cr2O3and lower contents of Al2O3, MgO and SiO2than Lg-Grt
图 9 芝麻坊超镁铁岩体中石榴石橄榄岩和不含石榴石橄榄岩的p-T条件计算
左上角字母是参考文献中作者; 数字分别是获得的温度(℃)和压力(105 kPa); 详细计算结果参见表 6
Fig. 9. Calculated p-T condition for Grt-and GF-peridotite from the Zhimafang ultramafic body
图 10 芝麻坊橄榄岩全岩MgO-FeO关系(Boyd et al., 2004)
熔融曲线表示在不同压力下被熔融成分的百分比(10%的间隔), 以GPa为单位(从1~7 GPa; Walter, 1998)
Fig. 10. Bulk rock MgO-FeO relations for the Zhimafang peridotite
表 1 CCSD-PP1钻孔岩心的岩性单元
Table 1. Lithological units in the PP1 drill hole
表 2 芝麻坊橄榄岩中橄榄石的代表性化学成分
Table 2. Representatives of olivine in the Zhimafang peridotite
表 3 芝麻坊超镁铁岩体中石榴石橄榄岩和不含石榴石橄榄岩中代表性的辉石化学成分
Table 3. Representatives of pyroxenes in Grt- and GF peridotite from the Zhimafang ultramafic body
表 4 芝麻坊石榴石橄榄岩中代表性石榴石的化学成分
Table 4. Representatives of garnet composition from the garnet peridotite in Zhimafang
表 5 芝麻坊橄榄岩中代表性铬铁矿成分分析
Table 5. Chromite compositions in the Zhimafang peridotite
表 6 CCSD-PP1石榴石橄榄岩的变质温压条件计算
Table 6. Metamorphic p-T conditions of PP1 garnet peridotites
表 7 计算得出的理论上斜方辉石的成分
Table 7. Weight percent analyses of theoretical orthopyroxenes
-
[1] Ames, L., Tilton, G.R., Zhou, G.Z., 1993. Timing of collision of the Sino-Korean and Yangtze cratons. Geology, 21: 339-342. [2] Boyd, F.R., 1989. Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96: 15-26. doi: 10.1016/0012-821X(89)90120-9 [3] Brey, G.P., Kohler, T., 1990. Geothermobarometry in fourphase lherzolites Ⅱ. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31: 1352-1378. [4] Cong, B.L., Zhang, R.Y., Li, S., et al., 1992. Preliminary study of isotopochronology of ecologites in northern Jiangsu and eastern Shangdong provinces, China. In: Exploration of volcanoes and rocks in Japan, China and American: Commemorative papers for Prof. Yukio Matsunoto. Yamaguchi University, Yamaguchi, Japan, 411-417. [5] Cox, K.G., Smith, M.R., Beswetherick, S., 1987. Textural studies of garnet lherzolites: Evidence of exsolution origin from high-temperature harzburgites. In: Nixon, P. H., ed., Mantle xenoliths., 537-550. [6] Hacker, B., Wang, Q. C., 1995. Thermal history of ultrahigh-pressure rocks, Dabie Mountains, China. Tectonics, 14: 994-1006. doi: 10.1029/95TC00932 [7] Harley, S.L., 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology, 86: 359-379. doi: 10.1007/BF01187140 [8] Hirajima, T., Ishiwatari, A., Cong, B.L., et al., 1990. Identification of coesite in Mengzhong eclogite from Donghai County, northeastern Jiangsu Province, China. Mineralogical Magazine, 54: 579-584. doi: 10.1180/minmag.1990.054.377.07 [9] Jahn, B.M., 1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen. Implications for continental subduction and collision tectonics. In: Hacker, B., Liou, J.G., eds., When continents collide: Geodynamics and geochemistry of ultrahigh-pressure rocks. Dordrecht, Kluwer, 203-239. [10] Katayama, I., Maruyama, S., Parkinson, C.T., et al., 2001. Iron micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth and Planetary Science Letters, 188: 185-198. doi: 10.1016/S0012-821X(01)00319-3 [11] Kretz, R., 1983. Symboles for rock-forming minerals. American Mineralogist, 68: 277-279. [12] Li, T.F., Yang, J.S., Zhang, R.Y., 2006. K-rich and carbonatic melt metasomatism in depleted upper mantle: Geochemical evidences from peridotites in pre-pilot hole of Chinese Continental Scientific Drilling Projecct. Earth Science—Journal of China University of Geosciences, 31(4): 457-474(in Chinese with English abstract). [13] Li, S.G., Chen, Y., Cong, B.L., et al., 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogite: Timing and processes. Chemical Geology, 109: 70-89. [14] Liou, J.G., Zhang, R.Y., 1998. Petrogenesis of a ultrahigh-pressure garnet-bearing ultramafic body from Maowu, Dabie Mountains, east-central China. The Island Arc, 7: 115-134. doi: 10.1046/j.1440-1738.1998.00188.x [15] Liu, F. L., Xu, Z, Q., Liou, Z.G., et al., 2002. Ultrahighpressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling site in eastern China. Eur. J. Mineral, 14: 499-512. doi: 10.1127/0935-1221/2002/0014-0499 [16] Liu, F.L., Xu, Z.Q., Liou, Z.G., et al., 2004. SHRIMP UPb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J. Metamorphic Geol., 22: 315-326. doi: 10.1111/j.1525-1314.2004.00516.x [17] Nickel, K. G., Green, D. H., 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73: 158-170. doi: 10.1016/0012-821X(85)90043-3 [18] Obata, M., Morten, L., 1987. Transformation of spinel lherzolite to garnet lherzolite in ultramafic lenses of the Austridic crystalline complex, Northern Italy. Journal of Petrology, 28: 599-632. doi: 10.1093/petrology/28.3.599 [19] Okay, A.I., Xu, S., Sengör, A.M.C., 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1: 595-598. doi: 10.1127/ejm/1/4/0595 [20] Okay, A.I., Sengör, A.M.C., 1992. Evidence for intra-continental thrust related exhumation of the ultra-high pressure rocks in China. Geology, 20: 411-414. [21] O'Neill, H. St. C., Wood, B.J., 1979. An experimental study of Fe-Mg partitioning between garnet and olivine and its application as a geothermometer. Contributions to Mineralogy and Petrology, 70: 59-70. doi: 10.1007/BF00371872 [22] Powell, R., 1985. Regression diagnostic and robust regression in geothermometer geobarometer calibration: The garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3: 231-243. doi: 10.1111/j.1525-1314.1985.tb00319.x [23] Ravna, E.J.K., 2000. The garnet-clinopyroxene geothermometer: An updated calibration. J. Metamorph. Geol. , 18: 211-219. doi: 10.1046/j.1525-1314.2000.00247.x [24] Rumble, D., Yui, T.F., 1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochemica et Cosmochemica Acta, 62: 3307-3321. doi: 10.1016/S0016-7037(98)00239-7 [25] Schumacher, J. C., 1991. Empirical ferric iron corrections: Necessity, assumptions and effects on selected geothermobarometers. Mineralogical Magazine, 55: 3-18. doi: 10.1180/minmag.1991.055.378.02 [26] Streckeisen, A., 1976. To each plutonic rock its proper name. Earth Sci. Rev. , 12: 1-33. doi: 10.1016/0012-8252(76)90052-0 [27] Wang, X.M., Liou, J.G., 1991. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: EvideGeologynce from country rocks, gneiss, marble, and metapelite. Geology, 19: 933-936. [28] Wang, X.M., Liou, J.G., Mao, H.K., 1989. Coesite-bearing eclogites from the Dabie Mountains in central China. Geology, 17: 1085-1088. [29] Xu, S. T., Liu, Y.C., Chen, G.B., et al., 2005. Microdiamonds, their classifications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineralogical Magazine, 69: 509-520. doi: 10.1180/0026461056940267 [30] Xu, Z, Q., Chen, J., Yang, J.S., et al., 2003. Discovery of titanoclinohumite and titanochondrodite exsolution in clinapyroxine included in garnet peridotite and their significance. Acta Geologica Sinica, 77(4): 547-555(in Chinese with English abstract). [31] Xu, Z.Q., 1987. Etude tectonicqtie et microtectonique de la China Paleozoique et Triasique des Qinlings(China). Thesis de doctorate, Univ. Sci. Tech. Languedoc, Montpellier. [32] Xu, Z.Q., Yang, W.C., Zhang, Z.M., et al., 1998. Scientific significance and site-selection researches of the first Chinese continental scientific deep drillhole. Continental Dynamics, 3: 1-13. [33] Yamada, H., Takahashi, E., 1984. Subsolidus phase relations between coexisting garnet and two pyroxines at 50 to 100 kbar in the system CaO-MgO-Al2O3-SiO2. In: Kornprobst, Q.V., ed., KimberlitesⅠ, Ⅱ: The mantle and crust-mantle relationships. Elsevier, Netherlands, 247-255. [34] Yang, J.J., Jahn, B.M., 2000. Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHP metamorphic terrane in China. Journal of Metamorphic Geology, 18: 167-180. doi: 10.1046/j.1525-1314.2000.00249.x [35] Yang, J.S., Wooden, J.L., Wu, C.L., et al., 2003. SHRIMP UPb dating of coesite-bearing zircons from the ultrahighpressure metamorphic rocks, Sulu terrane, east China. Journal of Metamorphic Geology, 21: 551-560. doi: 10.1046/j.1525-1314.2003.00463.x [36] Yang, J.S., Xu, Z.Q., Bai, W.J., 1998. Petrognesis of the garnet-peridotite and spinel-peridotite from the Zhimafang ultramafic block in the Donghai region, south of the Sulu UHPM belt, China. In: International workshop on UHP metamorphism and Exhumation. Stanford University, USA. A52-56. [37] Zhang, R. Y., Liou, J. G., 1994. Significance of magnesite paragenesis in ultrahigh-P metamorphic rocks. American Mineralogist, 79: 397-400. [38] Zhang, R.Y., Liou, J.G., Cong, B.L., 1995. Ultrahigh-pressure metamorphosed talc-, magnesite-and Ti-clinohumite-bearing mafic-ultramafic complex, Dabie Mountains, east-central China. Journal of Petrology, 36: 1011-1037. doi: 10.1093/petrology/36.4.1011 [39] Zhang, R. Y., Liou, J.G., Cong, B. L., 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, eastern China. Journal of Metamorphic Geology, 12: 169-186. doi: 10.1111/j.1525-1314.1994.tb00012.x [40] Zhang, R.Y., Liou, J.G., Yang, J.S., et al., 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology, 18: 149-166. doi: 10.1046/j.1525-1314.2000.00248.x [41] Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth and Planetary Science Letters, 237: 729-743. doi: 10.1016/j.epsl.2005.07.003 [42] Zhang, Z.M., Rumble, D., Liou, J.G., et al., 2005. Oxygen isotope geochemistry of rocks from the pre-pilot hole of the Chinese Continental Scientific Drilling Project (CCSD-PPH1). American Mineralogist, 90: 857-863. doi: 10.2138/am.2005.1650 [43] 李天福, 杨经绥, 张儒媛, 2006. 亏损上地幔中的富钾熔体和碳酸盐交代作用: 来自CCSD预先导孔橄榄岩的地球化学证据. 地球科学———中国地质大学学报, 31(4): 457-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604002.htm [44] 许志琴, 陈晶, 杨经绥, 等, 2003. 苏鲁超高压变质带石榴石橄榄岩中含钛硅镁石出溶体的发现及其意义. 地质学报, 77(4): 449-555. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200304010.htm