Deep Subduction Erosion Model for Continent-Continent Collision of the Sulu HP-UHP Metamorphic Terrain
-
摘要: 中国苏鲁高压—超高压变质地体由2个不同时代的变质基底组成.南苏鲁(临沭—连云港地区)中不同类型高压—超高压变质岩石的原岩形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动大陆边缘拉伸构造环境.研究表明南苏鲁高压—超高压变质岩石的原岩所代表的花岗岩浆和基性岩浆作用为罗迪尼亚超大陆形成后的新元古代(780-700Ma)裂解事件的响应.北苏鲁(青岛—威海)超高压变质地区的花岗质片麻岩锆石SHRIMPU-Pb定年表明,变质基底的年龄是2400Ma(或 & 2400 Ma),并经历了1800-1700Ma和-200Ma的变质事件,研究表明苏鲁高压—超高压变质地体由2个不同时代变质基底组成,北苏鲁的变质基底属于北中国板块胶辽朝地块的一部分,形成时代比南苏鲁基底老得多,其与南苏鲁地块之间的界限位于五莲以北到海阳所以南一线.由于在北苏鲁含柯石英的透辉石石英岩锆石SHRIMPU-Pb定年获得精确超高压峰期变质年龄为(234.1±4.2)Ma,退变质年龄为(218.2±1.5)Ma,表明南、北苏鲁2个不同时代基底地块同时经历了超高压变质作用.根据上述事实,提出苏鲁高压—超高压变质地体的陆—陆碰撞俯冲剥蚀新模式,即扬子板片在240-220Ma的深俯冲作用中拽动上部胶辽朝板片的—部分老变质基底岩石向下俯冲至大于100km的深度,并形成楔形俯冲剥蚀体,之后又与南苏鲁俯冲板片一起快速折返上来。
-
关键词:
- 苏鲁超高压变质地体 /
- 变质基底 /
- 陆—陆碰撞深俯冲剥蚀作用
Abstract: By the construction for the HP-UHP metamorphic rocks,containing eclogite,feldspar amphibolite,paragneiss and granitic gneiss,it is revealed that their protoliths were continental basaltic rocks,gabbros,supracrustal rocks and granites formed under extensional environment at the Yangtze passive continental margin. New zircon SHRIMP U-Pb dating for the protoliths of the south Sulu UHP metamorphic rocks reflects the Neoproterozoic (700—800 Ma) granitic-marie magmatism events induced by the Rodinia supercontinental breakup. Detailed zircon SHRIMP U-Pb dating for granitic gneiss in the N. Sulu (Qingdao-Weihai) area shows its oldest metamorphic basement being age of〉2 400 Ma and was overprinted by metamorphisms of 1 700-1 800 Ma and to 200 Ma. Therefore,above-mentioned age dating together with previous chronologic data led us to conclude that the Sulu HP-UHP nappes have two basements: the Early-Middle Protrozoic (≥2 400 Ma) basement in the N. Sulu and the Neoprotrozoic (700-800 Ma) basement in the S. Sulu. The basement ages in the N. Sulu together with its western part of the no-UHP metamorphic area (Laiyang-Penglai) are similar and named by the Jiao-Liao- Korea block (JLKB) belong to the NCP. Besides,the boundary between both of the S. Sulu UHP area and JLKB is along north Wulian and south Haiyangsuo. New zircon SHRIMP U-Pb dating for coesite-bearing quartzite of the N. Sulu shows the UHP peak metamorphism being age of 238 Ma and retrograde metamorphism being age of 215 Ma,which indicates both basements of the Sulu UHP metamorphic terrain have undergone UHPM simultaneously. Based on occurrences of the two different basements of the Sulu HP-UHP metamorphic terrain,a new dynamic model of deep subduction erosion for continent-continent collision is proposed in this study. That means during the deep subduction of YZP at 240-220 Ma,the part of JLKB had been dragged downward to be 100 kM depth and a wedge subduction erosion body was formed on the upper part of the Yangtze subducted slab. Then both of them were exhumed rapidly. -
0. 引言
苏鲁高压—超高压变质地体是北中国和扬子板块碰撞的产物,超高压变质带的岩石大部分来自于印支期扬子板片深俯冲(>100 kin)的大陆地壳,而后又快速折返到地表(Li et al., 1989, 1993, 2000a, 2000b;Ames et al., 1993, 1996;Maruyama et al.,1994;Cong et al.,1995;Cong,1996;Chavagnac and Jahn, 1996;Hacker et al., 1998;Liou et al., 1998).利用SHRIMP U-Pb精确定年结果表明,南苏鲁(临沭—连云港地区)超高压片麻岩的形成年龄为220~240 Ma,折返年龄为200~ 220 Ma(刘福来等, 2003a, 2003b)以及正、副片麻岩的原岩的形成时代为新元古代(Liu and Xu, 2004).但是发现北苏鲁(青岛—威海地区)的基性岩原岩形成时代偏老,出现17~18亿年的年龄(李曙光等,1994;杨经绥等,2002).
在超高压变质作用演化的研究中,超高压变质岩石的原岩和前超高压变质事件研究一直是薄弱环节.为了探讨高压—超高压变质地体的形成演化历史,有必要对前高压—超高压变质事件的历史(包括变质基底岩石的形成及其构造环境、主要构造事件的时限等问题)以及对超高压变质作用的影响与制约进行深入的研究。最近几年来研究揭示南苏鲁中不同类型高压—超高压变质岩石的原岩形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动大陆边缘拉伸构造环境(刘福来等, 2003a, 2003b;张泽明等,2004;许志琴等①,2006),最新的研究表明:南苏鲁高压—超高压变质岩石的原岩所代表的花岗岩浆和基性岩浆作用是罗迪尼亚超大陆形成后的新元古代裂解事件的响应;通过南苏鲁榴辉岩、斜长角闪岩、副片麻岩和花岗质片麻岩锆石SHIⅫVP U-Pb定年,确定南苏鲁的罗迪尼亚超大陆的裂解事件的时限大致为780~700 Ma,而表壳火山—碎屑岩的原岩主要形成于新元古代—古生代(Xu et al., 2006).
本文通过北苏鲁地体不同类型超高压变质岩石的锆石SHRIMP U-Pb精确定年,对比南、北苏鲁超高压变质地体的变质基底的原岩性质、形成时代及变质演化,为苏鲁超高压变质地体形成的深俯冲作用提供了新的动力学模型.
1. 地质背景
研究已揭示了NE-sW走向苏鲁高压—超高压变质地体.在苏鲁超高压变质地体中,榴辉岩和超基性岩占5%.它们的围岩花岗质片麻岩占70%,变质表壳岩占25%.南苏鲁地区三维空间(15 000 km3) 的表壳岩锆石中发现大量的柯石英及其他相伴生的超高压变质矿物包体,证明大量物质曾经历了超高压变质作用(>2.8 GPa,>650℃).(Liu et al., 1999, 2001, 2003, 2004a, 2004b, 2004c, 2004d).苏鲁高压~超高压变质带的基本构造格架自SE向Nw由高压(HP)变质叠置岩片和超高压(UHP)表壳/花岗变质叠置岩片单元组成,面理总体走向为NE-SW,向SE缓倾,并在北西部构成背形构造.构造单元与变质岩石序列分布具一致性.构造岩片之间的边界为强烈变形的韧性剪切带(图 1)(许志琴等,2003). 研究表明,北苏鲁地区(山东威海—海阳所一带)以出露大面积花岗片麻岩为特征,少量副片麻岩(包括蓝晶石—透辉石石英岩、大理岩、石榴石黑云母片麻岩、白云母片麻岩等),榴辉岩、石榴辉长岩、超基性岩及基性麻粒岩相岩石呈透镜体夹在正、副片麻岩中.北苏鲁与南苏鲁变质基底的最大区别在于北苏鲁含有原生的麻粒岩相深变质岩石.由于在威海角闪岩相花岗片麻岩中发现柯石英和绿辉石包体(Ye et al., 2000),后榴辉岩相的麻粒岩中发现残留的柯石英(Wang et al., 1993)以及橄榄岩锆石中发现柯石英包体(杨经绥等,2002);荣成榴辉岩中发现柯石英假象(Enami and Zang, 1989)以及估算大理岩和其中榴辉岩的形成压力达2.5~3.5 GPa (Kato and Hirasawa, 1997)等,认为苏鲁超高压变质带的北界可抵达五莲—烟台断裂一线.
图 1 苏鲁高压—超高压变质地体及邻区基底地质图1.基底变质岩石年龄>22亿年的胶辽朝陆块;2.经历超高压变质作用的陆一陆碰撞北苏鲁深俯冲剥蚀体;3.基底变质岩石年龄7~ 8亿年的南苏鲁地体;4.超高压变质带;5.高压变质带;6.胶辽朝陆块与南苏鲁地体的界限;7.韧性逆冲断层;8。走滑断层;9.正断层;10.中国大陆科学钻探(CCSD)孔位;11.本研究锆石SHRIMP U—Pb测年的采样位置及编号Fig. 1. Map showing different metamorphic basements for the Sulu Hp-UHP metamorphic terrain and adjacent area2. 北苏鲁超高压变质岩石的锆石SHRIMP U—Pb年代学记录
选择3件样品:山东烟台南桃村花岗片麻岩(SDX-20)、荣成单家含柯石英的透辉石石英岩(SJ- 1)和荣成单家含柯石英的黑云斜长片麻岩(SJ-14) 在河北廊坊地质调查研究院进行锆石分选,然后在双目镜下精选形态完好的锆石,用环氧树脂制成符合激光拉曼和SHRIMP测试的标准样品.锆石晶型及内部结构等在大陆动力学实验室激光拉曼仪和显微镜下观测,测试表明荣成单家透辉石石英岩(SJ- 1)和黑云斜长片麻岩(SJ-14)锆石中均含有柯石英包体(图 2).阴极发光图像在中国地质科学院矿产资源研究所电子探针实验室拍摄.锆石的SHRIMP UPb测年工作是在中国地质科学院地质所同位素实验室SHRIMP Ⅱ型离子探针仪上根据Stern and Rainbird(1998)的测试方法和过程操作的.
2.1 山东烟台南桃村花岗片麻岩(SDX-20)的SHRIMP U-Pb测年
烟台南桃林花岗片麻岩位于NE-SW向五连—烟台断裂东侧、样品(SDX-20)的岩性为绿帘石钾长花岗质片麻岩.岩石表面呈浅肉红色—灰白色,他形粒状变晶结构,块状构造,局部为弱片麻状构造;主要矿物组成为:钾长石+石英+斜长石,次要矿物为黑云母、绿帘石和多硅白云母等.通常长英质矿物含量大于95%,而黑云母+绿帘石+多硅白云母总量则小于5%.在石英、斜长石和钾长石晶体中常可见锆石矿物包体.
本样品包含2类锆石:一类为锆石核部或幔部的残余无晶形锆石或具环带的结晶岩浆锆石(Th/U>0.1);另一类是位于边部的浑圆状变质增生锆石(Th/U < 0.1)(图 3).共测20个数据,交点与年龄一致曲线相交,上交点2 425 Ma,中交点1 800 Ma,下交点集中的3个年龄的加权平均值(230.6±14.3)Ma.上交点2 425 Ma代表花岗片麻岩原岩形成年龄,中交点1 800 Ma代表原岩形成后经受的变质作用时期,下交点(230.6±14.3)Ma代表超高压变质年龄(表 1,图 4).在阴极发光图像(图 3)中可以看到位于锆石核部的残余无晶形锆石,幔部结晶岩浆锆石分别代表原岩形成年龄及1 800 Ma变质事件年龄.
表 1 北苏鲁烟台南桃林花岗片麻岩(SOX-20)锆石SHRIMP U-Pb定年数据Table Supplementary Table SHRIMP U-Pb data for zircons from the Taolin granitic gneiss sample(SDX-20)of Yantai, northern Sulu2.2 荣成单家含柯石英的透辉石石英岩(SJ-1)的SHRIMP U-Pb测年
荣成单家透辉石石英岩样品(SJ-1)呈浅灰绿色,主要由石英、透辉石组成,含少量自云母及碳酸盐矿物.透辉石石英岩锆石中超高压矿物包体的组合有石榴石、柯石英、绿辉石和磷灰石.本样品包含2类锆石:一类为变质增生锆石(Th/U < 0.1);另一类为变质过程中形成的部分重结晶锆石(Th/U < 0.1),说明是变质锆石在变质过程中部分重结晶引起的.共测13个点(表 2),其中5个测点(包含柯石英包体部位)的加权平均值为(234.1±4.2)Ma (MSWD=1.2);8个测点的的加权平均值为(218.2±1.5)Ma(MSWD-1.2)(图 5a).前者代表超高压峰期变质年龄,后者代表退变质年龄.
表 2 北苏鲁荣成单家透辉石石英岩(SJ-1)和黑云母片麻岩(SJ-14)锆石SHRIMP U-Pb定年数据Table Supplementary Table SHRIMP U-Pb data for zircons from diopsite quartzite(SJ-1) and biotite gneiss(SJ-14)samples of Shanjia, Rongcheng, N.Sulu2.3 荣成单家含柯石英的黑云斜长片麻岩(SJ-14) 的SHRIMP U-Pb测年
荣成单家含柯石英的黑云斜长片麻岩(SJ-14) 岩心表面呈灰白色,他形鳞片粒状变晶结构,片麻状构造.矿物组成为:黑云母+斜长石+石英,含少量石榴石.其中黑云母呈鳞片状,定向排列.副矿物锆石呈半自形晶一他形晶,以包体的形式存在于斜长石和石英中.在锆石中发现标志性超高压矿物相,超高压矿物包体的组合有石榴石、柯石英、绿辉石、菱镁矿、金红石、磷钇矿和磷灰石.
本样品包含2类锆石:一类为核部残余无晶形锆石或具环带的结晶岩浆锆石(Th/U>0.1);另一类为边部变质增生锆石(Th/u < 0.1),前者获得2组靠近谐和一致曲线的年龄(表 2):3个测点的加权平均值为(946±120)Ma(MSWD=6.9),5个测点的加权平均值为(644±74)Ma(MSWD=30);后者4个测点的加权平均值为(231±5)Ma(MSWD=1.8)(图 5b).上述结果表明,包含残余锆石(大致(946±120)Ma和(644±74)Ma年龄)的副片麻岩的原岩年龄应该小于600 Ma,剥蚀源区的基底岩石可能大于850 Ma本岩石也经历了231 Ma超高压变质事件.
3. 苏鲁高压—超高压变质地体深俯冲新模式的提出与讨论
3.1 北苏鲁超高压变质地体的变质基底时代
已初步揭示在北苏鲁超高压变质带中出现老的变质年龄:威海大屯榴辉岩锆石的SHRIMP年龄(1821±19)Ma(杨经绥等,2002),海阳所斜长角闪岩捕掳晶锆石U—Pb年龄2 149 Ma和岩浆锆石(1 784±11)Ma(李曙光等,1994).本研究针对大面积出露的威海SW部的SDX-20的花岗片麻岩锆石进行SHRIMP U—Pb测年,获得古老基底的形成年龄为>2 400 Ma,并经历了1 700~1 800 Ma的变质热事件.上述分析表明,北苏鲁地区的变质基底比南苏鲁变质基底(700~800 Ma)要老得多.
3.2 苏鲁超高压变质地体的2个变质基底及其界限
北苏鲁(青岛—威海)超高压变质地区的花岗质片麻岩锆石SHRIMP U-Pb定年表明,变质基底的年龄是2 400 Ma(或>2 400 Ma),并经历了1 800 1 700 Ma和~200 Ma的变质事件,北苏鲁的变质基底应属于北中国板块胶辽朝地块的一部分.研究表明五莲—烟台断裂以西的胶北地块由2个世代(2 500~2 800 Ma,1 700~1 800 Ma)的变质基底组成,已报道的莱西石榴辉石麻粒岩矿物—全岩SmNd等时线年龄为(1 752±30)Ma(李永刚等,1997),位于栖霞以北的混合片麻岩锆石U-Pb年龄(2 514±23)Ma和(2 715±39)Ma,麻粒岩化变辉长岩的角闪石39Ar/40Ar年龄(1 803.2±12.3)Ma (MSWD=6.7)(Faure et al., 2003).上述表明胶北与北苏鲁为2个时代(1 700~1 800 Ma和>2 400 Ma)的变质基底组成的同一古老地块,乔秀夫和张安棣(2002)曾把它称为“胶辽朝”地块.根据变质基底的组合和形成时代以及盖层(震旦纪—早古生代)的沉积特征和发展历史而区别于更古老的最老变质基底时代38亿年(刘敦一等,1994)的华北地块(克拉通)(乔秀夫和张安棣,2002).
南苏鲁超高压变质带不同类型超高压变质岩石:榴辉岩、角闪岩、副片麻岩和正片麻岩的原岩特征研究表明,它们曾形成于由大陆玄武质岩石、辉长岩、表壳岩和花岗岩组成的被动陆缘的拉伸构造环境,以及原岩所代表的花岗岩浆和基性岩浆作用为罗迪尼亚超大陆形成后的新元古代(780~700 Ma) 裂解事件的产物.
因此,北苏鲁基底形成时代比南苏鲁基底老得多,其与南苏鲁地块之间的界限位于五莲以北到海阳所以南一线.
3.3 北苏鲁超高压变质作用时限
根据荣成单家含柯石英的透辉石石英岩的SHRIMP U-Pb精确测年指示,锆石含柯石英超高压变质包体部位的测年为(234.1±4.2)Ma,代表超高压峰期变质年龄,退变质年龄为(218.2±1.5) Ma.上述数据与南苏鲁含柯石英包体的正、副片麻岩的SHRIMPU-Pb精确定年结果:超高压副片麻岩的形成年龄为220~234 Ma,折返年龄为202~ 219 Ma;超高压花岗质片麻岩形成年龄为224~ 242 Ma,折返年龄为209~219 Ma(刘福来等, 2003a, 2003b)几乎相似.说明南、北苏鲁变质基底岩石同时经历了超高压变质时间,并继而同时折返.
3.4 陆—陆碰撞深俯冲剥蚀模式
长期以来,超高压变质带俯冲和折返模式的建立是以陆—陆碰撞时期被动陆缘板片的单向深俯冲为基础的,苏鲁一大别超高压变质带也不例外.南苏鲁的许沟和芝麻房超基性岩体被认为原来是北中国板块的上地幔楔物质,后经历了超高压变质作用(Zhang et al., 1995).
但是本研究提供了一个重要的事实:苏鲁超高压变质地体由2个变质基底组成:一个是扬子板块的新元古代变质基底(700~800 Ma),形成于由大陆玄武质岩石、基性岩墙(脉)、表壳岩和花岗岩组成的被动大陆边缘的拉伸构造环境;另一个是北中国板块“胶辽朝地块”的早元古代(或更老>2 400 Ma) 和中元古代(1 700~1 800 Ma)变质基底.说明“胶辽朝地块”的北苏鲁地区和扬子板块的南苏鲁地区的基底岩石均遭受220~240 Ma以来的超高压变质事件,即两者同时深俯冲到地幔的深处(>100 km深度).
Peter and Paola(2004)在研究大洋岩石圈俯冲时提出2类活动陆缘:(1)加积板块边缘(accretionary plate margins);(2)剥蚀板块边缘(erosive plate margins).认为大洋岩石圈板片俯冲作用可以将上部板片中大量陆壳物质拖拽下去,在海沟地带形成剥蚀板块边缘.已经证明在全球具有板块剥蚀边缘特征的地带有太平洋东岸中南段(墨西哥—北智利)、太平洋西岸的日本岛弧东倾1](Kurile-IsuMariana)及澳大利亚东岸(Tonga—Ker— madec)(Peter and Paola, 2004).另外,Russell(2001, 2002)通过陆—陆碰撞的壳幔体系数值模拟提出俯冲的地幔岩石圈沿壳—幔界面向下俯冲的新的板块双向俯冲演化模式.
在这里,我们根据苏鲁超高压变质带的2个变质基底存在的事实,提出一个新的陆—陆碰撞的俯冲剥蚀模式(图 6),即在240~220 Ma扬子板片深俯冲过程中,拽动相邻的北中国板块“胶辽朝地块”的一部分物质向下俯冲,在扬子板片的上盘形成楔形俯冲剥蚀体,后又快速折返地表,这就是现在的北苏鲁变质楔状体,其中可能包含没有俯冲到100 km深度的非超高压变质岩石,因为在SDX-20样品的锆石中我们没有发现柯石英包体.陆—陆碰撞俯冲剥蚀模式与以往超高压变质带形成模式不同之处在于,其不是简单的单向俯冲模式,而是由于被动陆缘板块的俯冲引起上覆板片物质遭受俯冲剥蚀,导致不对称的双向俯冲;本模式也不同于大洋岩石圈俯冲的俯冲剥蚀模式(Peter and Paola, 2004)和陆—陆碰撞的双向俯冲模式(Russell, 2001, 2002).
本研究得到国家自然科学基金重大项目(No. 40399141)、国家基础研究“973”项目(No. 2003CB716500)和中国地质调查局重点项目(No. 121201056606)的资助.SHRIMP U—Pb测年在中国地质科学院地质研究所离子探针中心进行,得到宋彪、阎全人研究员的帮助,激光拉曼在国土资源部大陆动力学实验室测试,阴极发光照片在中国地质科学院矿床资源研究所拍摄,图件由张晓卫和张淼绘制,一并感谢! -
图 1 苏鲁高压—超高压变质地体及邻区基底地质图
1.基底变质岩石年龄>22亿年的胶辽朝陆块;2.经历超高压变质作用的陆一陆碰撞北苏鲁深俯冲剥蚀体;3.基底变质岩石年龄7~ 8亿年的南苏鲁地体;4.超高压变质带;5.高压变质带;6.胶辽朝陆块与南苏鲁地体的界限;7.韧性逆冲断层;8。走滑断层;9.正断层;10.中国大陆科学钻探(CCSD)孔位;11.本研究锆石SHRIMP U—Pb测年的采样位置及编号
Fig. 1. Map showing different metamorphic basements for the Sulu Hp-UHP metamorphic terrain and adjacent area
表 1 北苏鲁烟台南桃林花岗片麻岩(SOX-20)锆石SHRIMP U-Pb定年数据
Table 1. SHRIMP U-Pb data for zircons from the Taolin granitic gneiss sample(SDX-20)of Yantai, northern Sulu
表 2 北苏鲁荣成单家透辉石石英岩(SJ-1)和黑云母片麻岩(SJ-14)锆石SHRIMP U-Pb定年数据
Table 2. SHRIMP U-Pb data for zircons from diopsite quartzite(SJ-1) and biotite gneiss(SJ-14)samples of Shanjia, Rongcheng, N.Sulu
-
[1] Ames, L., Tilton, G. R., Zhou, G., 1993. Timing of ollision of the Sino-Korean and Yangtze cratons: UPb zircon dating of coesite-bearing elogites. Greology, 21: 339-342. [2] Ames, L., Zhou, G., Xiong, B., 1996. Geochronology and isotopic character of ultrahighrpressure metamorphism with implications for ollision of the Sino-Korean and Yangize cratons, central China. Tectomics, 15: 472-489. [3] Chavagnac, V., Jahn, B. M., 1996. Coesite -bearing eclogites from the Bixiling complex, Dabie Mountains, China: SmNd ages, geochemical characteristics and tectonic implications. Chem. Geol. , 133: 29-51. doi: 10.1016/S0009-2541(96)00068-X [4] Cong, B. L., 1996. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press, Beijing, 224. [5] Cong, B. L., Zhai, M., Carswell, D. A., et al., 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuanghe in Dabieshan, central China. Eur. J. Mineral. , 7: 119-138. doi: 10.1127/ejm/7/1/0119 [6] Enami, M., Zang, Q J., 1989. Quartz pseudomorph after coesite in eclogites from Shandong Province, east China. American Mineralogist, 75: 381-386. [7] Faure, M., Lin, W., Monie, P., et al., 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: New petrologicalstructural-radiometric insights from the Shandong Peninsula. Tectonics, 22: 1018. [8] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh pressure Qinling Dabie orogen, China. Earth and Planetary Science Letters, 161: 215-230. doi: 10.1016/S0012-821X(98)00152-6 [9] Kato, N., Hirasawa, T., 1997. A numerical study on seismic coupling along subduction zones using a laboratoryderived friction law. Physics of the Earth and Planetary interiors, 102(1-2): 51-68. doi: 10.1016/S0031-9201(96)03264-5 [10] Li, S. G., Chen, Y. Z., Ge, N. J., et al, , 1994, U-Pb Zircon ages of eclogite and gneiss from Jiaonan Group in Qingdao area: Evidence for Jinning magatic event in history of the Jiaonan Group. Acta Geoscientia Sinica, 1-2: 35-36 (in Chinese with English abstract). [11] Li, S. G., Hart, S. R., Zhang, S. G., et al., 1989. Timing of collision between north and south China blocks-The Sm-Nd isotopic age evidence. Science in China, 32: 1393-1400. [12] Li, S. G., Jagoutz, E., Chen, Y. Z., et al., 2000a. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China, Geochimica et Cosmochimica Acta, 64: 1077-1093. doi: 10.1016/S0016-7037(99)00319-1 [13] Li, S. G., Jagoutz, E., Lo, C. H., et al., 2000b. Sm/Nd, Rb/Sr, and 40Ar/39Ar isotopic systematics of ultrahighpressure metamorphic rocks in the DabieSulu slice, central China: A retrospective view. In; Ernst, W. G,, Liou, J. G., eds., Ultra-high pressure metamorphism and geodynamics in cllion-type orogenic slices. The Sheridan Press, Pennsylvanian, 234-244. [14] Li, S. G., Xiao, Y. L., Liu, D. L., et al., 1993. Collision of North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109: 89-111. doi: 10.1016/0009-2541(93)90063-O [15] Li, Y. G., Zhai, ML G., Liu, H., et al., 1997. SmrNd geochronology of the high pressure basic granulite, in Laixi, eastern Shandong. Scientia Geologica Sinica, 32 (3): 283-290 (in Chinese with English abstract). [16] Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. Highpressure minerals from deeply subducted metamorphic rocks. Review in Mineralogy and Geochemistry, 37: 33-96. [17] Liu, D. Y., Wu, J. S., Sheng, Q. H., et al., 1994. The remnants of ≥ 3 800 Ma crust in Sino Korean craton--The evidence from ion microprobe U-Pb dating. of zircons. Acta Geoscientia Sinica, 1-2: 3-13 (in Chinese with English abstract). [18] Liu, F. L., Xu, Z. Q., 2004. Fluid inclusions hidden in coesite -bearing zircons in ultrahighr pressure metamorphie rock from south western Sulu terrane in eastern China, China, Chinese Science Bulletin, 49(2): 181-189. doi: 10.1360/03wd0047 [19] Liu, F. L., Xu, Z. Q., Katayama, I., et al, , 2001. Mineral inclusions in zircons of para-and orthogneiss from pre pilot drillhole CCSD PP1, Chinese Continental Scientific Dirlling Project. Lithos, 59: 199-215. doi: 10.1016/S0024-4937(01)00064-0 [20] Liu, E. L., Xu, Z. Q., Liou, J. G., , 2004a, Tracing the boundary between UHP and HP metamorphic slices in the south-western Sulu terrane, eastern China: Evidence from mineral inclusions in zircons from metamorphic rocks. International Geology Rervier, 46: 409-425. doi: 10.2747/0020-6814.46.5.409 [21] Liu, F. L., Xu, Z. Q., Liou, J. G., , et al., 2004b, SHRIMP U-Pb ages of ultrahigh pressure and retrograde metamorphism of geisses, south westerm Sulu train, eastemn China. Joumal of Metamorphic Geology, 22: 315-326. doi: 10.1111/j.1525-1314.2004.00516.x [22] Liu, F. L., Xu, Z. Q., Song, B., 2003a Precise restriction of noneUHP granitic gneiss from the UHP metamorphic belt in the Sulu terrane, Eastern China: Evidence from mineral inclusion, cathodoluminescence images and SHRIMP U-Pb dating in zircon domains. Acta Geologica Simica, 77 (4): 534-540 (in Chinese with English abstract). [23] Liu, F. L., Xu, Z. Q., Song, B., 2003b. Determination of UHP and Retrograde metamorphic ages of the Sulu terrane: Evidence from SHRIMP U-Pb dating on Zircons of gneissic rocks. Acta Geologica Sinica, 77(2): 229-239 (in Chinese with English abstract). [24] Liu, F. L., Xu, Z. Q., Xu, H. F., et al., 1999. High and ultrahigh-pressure metamorphism and retrogressive textures of gneiss in the Donghai area: Evidence from gneisses in drillhole ZK2304. Acta Geologica Sinica, 73 (3): 300-315. doi: 10.1111/j.1755-6724.1999.tb00839.x [25] Liu, F. L., Xu, Z. Q., Xue, H. M., 2004c, Tracing the protolith, UHP metarmorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos, 78: 411-429. doi: 10.1016/j.lithos.2004.08.001 [26] Liu, F. L., Yang, J. s., Xu, Z. Q., 2004d. SHRIMP ages of ultrahigh-pressure and retrograde metamorphism of gneisses, Sulu terrain, eastern China. Science in China (Series D), 34(3): 219-227. [27] Maruyama, S., Liou, J. G., Zhang, R., 1994. Tectonic evolution of the ultrahigh pressure (UHP) and high-pressure (HP) metamorphic slices from central China, The Island Arc, 3: 112-121. doi: 10.1111/j.1440-1738.1994.tb00099.x [28] Peter, C., Paola, V., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Review of Geophysics, 42: 1-31. [29] Qiao, X. F., Zhang, A. D., 2002. North China block, JiacLiao-Korea block and Tanlu fault. Geology in China, 29 (4): 337-345 (in Chinese with English abstract). [30] Russell, N. P., 2001. Evolution of subducting mantle lithosphere at a continental plate boundary. Geophysical Research Letters, 22(23): 4399-4402. [31] Russell, N. P., 2002. Lithospheric deformation during the early stages of continental collision: Numerical experiments and comparison with south island, New Zealand, Journal of Geophysical Research, 107(B7, 2133): 10. [32] Stern, R. A., Rainbird, R. H., 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia Siberia connection. Earth and Planetary Science Letters, 164(3-4): 409-420. doi: 10.1016/S0012-821X(98)00222-2 [33] Wang, Q. C., Ishiwateri, A., Zhao, Z. U., et al., 1993. Coesitebearing granulite retrograded from eclogite in Weihai, eastern China. J. Mineral. , 5: 141-152. [34] Xu, Z. Q., Zeng, L. S., Zhang, Z. M., et al., 2006. Polyphase subduction and exhumation of the Sulu high-pressure ultrahigh-pressure (HP-UHP) metamorphic terrane. In; Hacker, B. R., McCelland, W. C., Liou, J. G., eds., Ultrahigh-pressure metamorphism; Deep continental subduction. Geological Society of America Special Paper, 403: 9, doi: 10.1130/2006.2403(05). [35] Xu, Z. Q., Zhang, Z. M., Liu, E. L., et al, 2003. Exhueanation structure and mechanism of the Sulu ultrahigh pressure metamorphic belt, central China. Acta Geologica Simica, 77 (4): 433-450 (in Chinese with English abstract). [36] Yang, J. S., Xu, Z. Q., Liu, F. L., et al., 2002. SHRIMP UPb dating on coesite-bearing zircon; Evidence for Indosinian ultrahigh-pressure metamorphism SurLu, East China. Acta Geologica Sinica, 76(3): 354—371 (in Chinese with English abstract). [37] Ye, K., Yao, Y. P., Katayarna, L., et al., 2000. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52: 157-164. doi: 10.1016/S0024-4937(99)00089-4 [38] Zhang, R Y., Liou, J. G., Ernst, W. C., 1995. Ultrahighpressure metamorphism and decompressional PT paths of eclogites and country rocks from Weihai, eastern China. The Island Arc, 4: 293-309. doi: 10.1111/j.1440-1738.1995.tb00151.x [39] Zhang, Z. M., Xu, Z. Q., Liu, F. L., et al., 2004. Geochemistry of eclogites from the main hole(100-2 050 m) of Chinese Continental Scientific Drilling Projiect. Acta Petrologica Sinica, 20(1): 27-42 (in Chinese with English abstract). [40] 李曙光, 陈移之, 葛宁洁, 等, 1994. 青岛榴辉岩及胶南群片麻岩的锆石U-Pb年龄—一胶南群中晋宁期岩浆事件的证据. 地球学报, 1-2: 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB4Z1.005.htm [41] 李永刚, 翟明国, 刘辉, 等, 1997. 胶东莱西地区高压麻粒岩的Sm-Nd同位素年代学. 地质科学, 32(3): 283-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX703.004.htm [42] 刘敦一, 伍家善, 沈其韩, 等, 1994. 中朝克拉通老于38亿年的残余陆壳一离子探针质谱锆石微区U-Pb年代学证据. 地球学报, 1-2: 3-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB4Z1.001.htm [43] 刘福来, 许志琴, 宋彪, 2003a. 苏鲁超高压变质带中非超高压花岗质片麻岩的准确识别: 来自锆石微区矿物包体及SHRIMP U-Pb定年的证据. 地质学报, 77 (4): 534-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200304007.htm [44] 刘福来, 许志琴, 宋彪, 2003b. 苏鲁地体超高压和退变质时代的厘定: 来自片麻岩锆石微区SHRIMPU-Pb定年的证据. 地质学报, 77(2): 229-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302018.htm [45] 乔秀夫, 张安棣, 2002. 华北块体, 胶辽朝抉体与郯庐断裂. 中国地质, 29(4): 337-345. doi: 10.3969/j.issn.1000-3657.2002.04.001 [46] 许志琴, 张泽明, 刘福来, 等, 2003. 苏鲁高压-超高压变质带的折返构造及折返机制. 地质学报, 77(4): 433-450. doi: 10.3321/j.issn:0001-5717.2003.04.001 [47] 杨经绥, 许志琴, 刘福来, 等, 2002. 含柯石英锆石的SHRIMP U-Pb定年: 胶东印支超高压变质作用的证据. 地质学报, 76(3): 354-371. doi: 10.3321/j.issn:0001-5717.2002.03.008 [48] 张泽明, 许志琴, 刘福来, 等, 2004. 中国大陆科学钻探工程主孔(100~2 050 m)榴辉岩岩石化学研究. 岩石学报, 20(1): 27-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401002.htm -