Features of the Faults in Center and North Tibetan Plateau: Based on Results of INDEPTH (Ⅲ)-MT
-
摘要: 根据1998年和1999年INDEPTH (Ⅲ) MT在西藏中、北部所完成的德庆-龙尾错(500线)和那曲-格尔木(600线) 超宽频带大地电磁深探测剖面数据研究西藏高原中北部断裂构造特征, 有助于推进印度板块与亚洲板块碰撞、俯冲构造模式的研究.研究结果表明, 区内发育有F1~F10一系列深断裂.其中, F2向北倾斜是早期的主断裂, F1则是后期主逆冲断裂, 它们共同构成空间结构复杂的嘉黎深断裂带.班公-怒江缝合带的主断裂系由略微向南陡倾的F3、F4和F5三组超壳深断裂构成; 由于受后期构造运动强烈的改造, 缝合带内发育多条延深不大的上地壳断层.唐古拉断裂带由F6、F7两组主断裂和一系列次级断裂构成; 主断裂产状上陡、下缓, 总体向南倾斜, 向下延深达下地壳.而金沙江缝合带是由F8 (金沙江断裂)和F9 (可可西里断裂), 以及它们之间存在的一系列上地壳次级断层共同组成的, 是一组很宽的地块碰撞缝合带.F10即昆中断裂是产状陡立的超壳深断裂, 是昆仑山断裂带的主体构造, 它构成松潘-甘孜-可可西里地块的北部边界.从剖面电性结构特征分析, 昆中断裂以南属于西藏高原主体; 而以北地区是否还归属西藏高原?这有待更深入的讨论.值得特别关注的事实是, 研究区内2组缝合带之下都存在向上地幔延伸的壳内高导体, 它们可能反映区内壳幔热交换过程的痕迹.
-
关键词:
- INDEPTH-MT /
- 大地电磁测深 /
- 断裂特征 /
- 壳幔热交换.
Abstract: The features of the faults in the center and north of the Tibetan plateau are discussed, based on two super-wide band magnetotulleric (MT) sounding profiles which belong to INDEPTH (Ⅲ) -MT and were finished between 1998 and 1999: one is from Deqing to Longweicuo (named line 500), the other is from Naqu to Golmud (named line 600). This work assists research on the collision and subduction mode between the India and Asia plates. The MT result shows that there are series of deep faults, F1 to F10, in the center and north Tibetan plateau. Of these faults, F2 is an earlier main fault which leans to the north, and F1 is a later main overriding fault. Jiali deep fault zone, which has a very complex space structure, is composed of these two faults. F3, F4 and F5 are super-deep faults. They are high angle faults and lean a little to the south. The main fault zone of Bangong-Nujiang suture is composed of these three faults. Because of later activity in the structure, several shallow faults formed in the upper crust within the Bangong-Nujiang suture. Tanggula fault zone is composed of two main faults, F6 and F7, and a series of sub-faults. The shallow segments of the main faults are in high angle and the deep segments of main faults are in low angle. These two faults lean to the south generally and extend into the lower crust. Jinshajiang suture is composed of Jinshajiang fault (F8) and Kekexili fault (F9), and there is a series of sub-faults in the upper crust between these two faults. Jinshajiang suture is a very wide suture caused by continent-continent collision. The Middle-Kunlun fault (F10), which is the main structure of Kunlun fault zone, is a high angle, super-deep fault. It is the north boundary of Songpan-Ganzi-Kekexili block. Based on the conductive structure of the profile, the south of the Middle-Kunlun fault belongs to the Tibetan plateau, but it is not certain whether the north of Middle-Kunlun fault also belongs to the Tibetan plateau. There are conductive bodies stretched from the crust into the upper mantle below Bangong-Nujiang suture and Jinshajiang suture. This may suggest heat exchange between crust and mantle. -
图 1 INDEPTH-MT测线布置(底图尹安, 2001)
Ⅰ.北祁连缝合带; Ⅱ.木里—拉脊山缝合带; Ⅲ.柴达木北缘缝合带; Ⅳ.玛沁缝合带; Ⅴ.金沙江—哀劳山缝合带; Ⅵ.龙木错—双湖—澜沧江缝合带; Ⅶ.班公错—怒江缝合带; Ⅷ.印度河—雅鲁藏布江缝合带; Ⅸ.甘孜—理塘缝合带
Fig. 1. INDEPTH-MT profile position
-
[1] Guo, X. F., Zhang, Y. C., Cheng Q. Y., et al., 1990. Magnetotelluric studies along Yadong-Golmud geosciences transect in Qinghai-Xizang plateau. Bulletin of the Chinese Academy of Geological Sciences, 21: 191-202(in Chinese). [2] Leshou, C., John, R. B., Jones, A. G., et al., 1996. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 274, 1694-1696. doi: 10.1126/science.274.5293.1694 [3] Martyn, U., 2003. Studying continental dynamics with magnetotelluric exploration. Earth Science Frontiers, 10 (1): 25-38(in Chinese). [4] Meng, L. S., Gao, R., Zhou, F. X., et al., 1990. Interpretation of the crustal structure in Yadong-Golmud area using gravity anomalies. Bulletin of the Chinese Academy of Geological Sciences, 21: 149-161(in Chinese). [5] Pan, Y. S., Kong, X. R., 1998. Lithosphere structure, evolution and dynamics of Qinghai-Xizang(Tibetan) plateau. Guangdong Science and Technology Press, Guangzhou(in Chinese). [6] Research Institute of Geology and Mineral Resources ChengDu, 1986. The geological map of Qinghai-Xizang(Tibetan) plateau and near-area. Geological Publishing House, Beijing(in Chinese). [7] Shen, J., Ren, J. W., Wang, Y. P., et al., 2001. The Quaternary right lateral strike slipping of the Jiali fault zone in south Tibet, Investigation on present-day crustal motion and geodynamics. Seismological Press, Beijing, 106-122(in Chinese). [8] Wei, W. B., Chen, L. S., Tan, H. D., et al., 1997. MT sounding on Tibetan plateau-Electrical structure of crust and mantle along profile of Yadong-Bamucuo. Geoscience, 11 (3): 366-374(in Chinese with English abstract). [9] Wei, W. B., Martyn, U., Jones, A., et al., 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292: 716-718. doi: 10.1126/science.1010580 [10] Wu, G. J., Xiao, X. C., Li, T. D., 1989. The Yadong-Golmud geoscience on the Qinghai-Xizang plateau. Chinese J. Geology, 63(4): 285-296(in Chinese with English abstract). [11] Xu, Z. Q., Yang, J. S., Jiang, M., et al., 2001. Lithosphere structure and its cut faults of eastern Kunlun-Qiangtang north Tibetan plateau. Science in China(Series D), 31 (Suppl. ), 1-7(in Chinese with English abstract). [12] Yin, A., 2001. Geologic evolution of the Himalayan-Tibetan orogen. Acta Geoscientia Sinica, 22(3): 195-230(in Chinese with English abstract). [13] Zhao, W., Mechie, J., Brown, L. D., et al., 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys. J. Int. , 145: 486-498. doi: 10.1046/j.0956-540x.2001.01402.x [14] Zhao, W. J., Nelson, K. D., 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557-559. doi: 10.1038/366557a0 [15] 成都地质矿产研究所, 1986. 藏高原及邻区地质图说明书. 北京: 地质出版社. [16] 郭新峰, 张元丑, 程庆云, 等, 1990. 青藏高原亚东-格尔木地学断面岩石圈电性研究. 中国地质科学院院报, 21: 191-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199002018.htm [17] 马丁·昂斯沃次, 2003. 用大地电磁勘探方法研究大陆动力学, 地学前缘, 10(1): 25-38. doi: 10.3321/j.issn:1005-2321.2003.01.004 [18] 孟令顺, 高锐, 周富祥, 等, 1990. 利用重力异常研究亚东-格尔木地壳构造, 中国地质科学院院报, 21: 149-161. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199002014.htm [19] 潘裕生, 孔祥儒, 1998. 青藏高原岩石圈结构演化和动力学. 广州: 广东科技出版社. [20] 沈军, 任金卫, 汪一鹏, 等, 2001. 西藏南部嘉黎断裂带第四纪右旋走滑运动研究, "现代地壳运动与地球动力学研究". 北京: 地震出版社, 106-122. [21] 魏文博, 陈乐寿, 谭捍东, 等, 1997. 西藏高原大地电磁深探测——亚东-巴木错沿线地区壳幔电性结构. 现代地质, 11(3): 366-374. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ703.017.htm [22] 吴功建, 肖序常, 李廷栋, 1989. 亚东-格尔木地壳及上地幔的构造和演化. 地质学报, 63(4): 285-296. doi: 10.3321/j.issn:0001-5717.1989.04.003 [23] 许志琴, 杨经绥, 姜枚, 等, 2001. 青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层, 中国科学(D辑)31(增刊), 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1000.htm [24] 尹安, 2001. 喜马拉雅-青藏高原造山带地质演化. 地球学报, 22(3): 195-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200103000.htm