Paleohydrocarbon Water Contact Restoration of Typical Silurian Oil and Gas Reservoirs in the Northern Tarim Basin
-
摘要: 油气藏油水界面的变迁记录了油气藏形成以后调整、改造甚至破坏的历史.恢复各地质时期的古油气水界面的位置, 可以帮助我们确定地下烃类流体运聚成藏的时间, 恢复流体成藏后的变迁、调整过程, 认识油气藏形成、分布的规律, 对研究区作出较为准确的资源评价.应用含油包裹体颗粒指数(GOI) 方法和定量颗粒荧光(QGF) 技术对塔北地区典型油气藏的古油水界面进行了恢复, 结果表明, 塔北地区志留系古油藏古油水界面的位置低于现今沥青砂岩段底界的位置, 沥青砂岩段底界并不是古油层的底界, 在沥青砂岩段之下还有一段古油柱, 在油藏破坏过程中, 这部分原油运移到构造的高部位了, 没有在原地留下沥青; 沥青砂的厚度小于古油柱的厚度, 这意味着古油藏的规模要大于现今油藏规模.
-
关键词:
- 塔北地区 /
- 志留系 /
- 古油水界面恢复 /
- 含油包裹体颗粒指数(GOI) /
- 定量颗粒荧光(QGF)
Abstract: Changes in hydrocarbon-water contact record the history of the adjustment, reconstruction and even destruction of reservoirs. Restoring the positions of paleohydrocarbon-water contact of reservoirs in different periods of geological history can determine the timing of migration, accumulation of hydrocarbon and reservoir adjustment. This can aid in understanding the laws governing the formation and distribution of reservoirs and assist in the evaluation of petroleum resources. The paleohydrocarbon-water contact of the typical reservoirs in northern Tarim was restored using the methods of GOI and QGF. The results show that the paleohydrocarbon-water contact of Silurian reservoirs in the northern Tarim is lower than the bottom of the current asphalt sandstone. That is, there is a paleo-oil column below the current asphalt sandstone and the oil in it has migrated into the structural high and has not left the asphalt during the period of the reservoir's destruction. So, the thickness of asphalt sandstone is less than the height of the paleo-oil column, which means the szle of paloreserviores is bigger than that of current reserviors.-
Key words:
- northern Tarim basin /
- Silurian /
- paleohydrocarbon water contact restoration /
- GOI /
- QGF
-
图 1 油层与水层GOI数据对比(据Eadington et al., 1996修改, 数据来自澳大利亚23个油田)
Fig. 1. GOI data contrast between oil layer and water layer
图 2 利用GOI数据恢复古油藏油水界面示意图(据朱扬明, 1999修改)
a. 构造运动造成古油水界面发生变化; b. 天然气排驱原油造成古油水界面发生变化
Fig. 2. Oil-water contact sketch map of ancient oil reservoir recovered by GOI data
图 3 澳大利亚Timor Sea地区古油层与水层样品荧光强度变化(Liu and Eadington, 2003, 未出版)
Fig. 3. Map showing fluorescence intensity variation of ancient oil layer sample and water layer sample in Timor Sea area of Australia
表 1 哈得1-18H井GOI数据测定结果
Table 1. GOI data testing results of HD 1-18H well
-
[1] Cai, C.F., Gu, J.Y., Cai, H.M., 2001. Effect of hydrocarbon emplacement on diagenesis of Silurian sandstone of central Tarim basin. Acta Sedimentologica Sinica, 19(1): 60-63(in Chinese with English abstract). [2] Eadington, P. J., 1995. Identifying oil well sites. United States Patent Application, No. 08 /506, 181. [3] Eadington, P.J., Lisk, M., Krieger, F.W., 1996. Identifying oil well sites. United States Patent, 5: 543-616. [4] Guo, Z. J., Zhang, Z.C., Jia, C.Z., et al., 2000. Tectonic framework of Precambrian basement in Tarim craton. Science in China(Series D), 30(6): 568-575(in Chinese). [5] Hawkings, P.J., 1978. Relationship between diagenesis porosity reduction and oil emplacement in Late Carboniferous sandstone reservoirs, Bothamsall Oil Field. E. Midlands, Journal o f Geological Society o f London, 135: 7-24. [6] Jia, C.Z., 1997. Tectonic patterns and oil and gas in Tarim basin, China. Petroleum Industry Press, Beijing, 275-323(in Chinese). [7] Karlsen, D.A., Larter, S., 1991. Analysis of petroleum fractions by TLC-FID: Applications to petroleum reservoir description. Organic Geochemistry, 17: 603-617. [8] Kihle, J., Johansen, H., 1994. Low-temperature isothermal trapping of hydrocarbon fluid inclusion in synthetic crystals of KH2PO4. Geochim. Cosmochim. Acta, 58: 1193-1202. [9] Li, X.J., Wu, H.B., Xi, B. R., 1998. Confirmation of oilwater contact of Xinzhan struc-lithological reservoir in Songliao basin. Oil Exploration and Development, 17(1): 12-13(in Chinese with English abstract). [10] Lisk, M., Eadington, P.J., 1994. Oil migration in the Cartier Trough, Vulcan sub-basin. In: Purcell, P.G., Purcell, R.R., eds. The sedimentary basins of WA, Proceedings, PESA Symposium, Perth 302-312. [11] Lisk, M., George, S.C., Summons, R.E., et al., 1996. Mapping hydrocarbon charge histories: Detailed characterization of the south Pepper oil field, Carnarvon basin. APPEA Journal, 445-463. [12] Lisk, M., O'Brien, G.W., Eadington, P.J., 2002. Quantitative evaluation of the oil-leg potential in the Oliver gas field, Timor Sea, Australia. AAPG Bulletin, 86: 1531-1542. [13] Liu, K., Coghlan, D., Cable, T., et al., 2002. Quantitative grain fluorescence(QGF). Procedure's Manual and Explanation Notes. CSIRO Confidential Report, 02-060. [14] Liu, K., Eadington, P., Coghlan, D., 2003. Fluorescence evidence of polar hydrocarbon interaction on mineral surfaces and implications to alteration of reservoir wetability. Journal o f Petroleum Engineering, 39: 275-285. [15] Liu, K., Kurusingal, J., Coghlan, D., et al., 2001. Quantitative grain fluorescence(QGF), a technique to detect (palaeo-)oil zones by measuring trace fluorescence from reservoir grains. CSIRO Petroleum Unrestricted Report, 01-010. [16] Lü, X.X., Zhang, Y.W., Jin, Z.J., 1996. Discussion on oil and gas accumulation circles of Tarim basin. Chinese Science Bulletin, 41(22): 2064-2066(in Chinese). [17] Marchand, A. M. E., Haszeldine, R. S., Macaula, C. I., et al., 2000. Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea. Clay Minerals, 35: 205-214. [18] Marchand, A. M. E., Haszeldine, R. S., Smalley, P. C., et al., 2001. Evidence for reduced quartz cementation rates in oil-filled sandstones. Geology, 29: 915-918. [19] Marchand, A.M.E., Smalley, P.C., Haszeldine, R., S., et al., 2002. Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones. AAPG Bulletin, 86: 1561-1571. [20] Nedkvitne, T., Karlsen, D.A., BjrΦykke, K., et al., 1993. Relationship between reservoir diagenetic evolution and petroleum emplacement in the Ula field, North Sea. Marine and Petroleum Geology, 10: 255-270. [21] Oxtoby, N. H., Mitchell, A. W., Gluyas. J.G., 1995. The filling and emptying of the Ula oilfield: Fluid inclusion constraints. In: Cubbit, J. M., England, W. A., eds., The geochemistry of reservoirs. Geological Society Special Publication, 86: 141-57. [22] O'Brien, G.W., Lisk, M., Duddy, I., et al., 1996. Late Tertiary fluid migration in the Timor Sea: A key control on thermal and diagenetic histories. APPEA Journal, 399-425. [23] Pang, X.Q., Jin, Z.J., Jiang, Z.X., et al., 2002. Evaluation of hydrocarbon resources of superimposed basin and its significance. Petroleum Exploration and Development, 29(1): 9-13(in Chinese with English abstract). [24] Saigal, G.C., BjrΦykke, K., Larter, S.R., 1992. The effects of oil emplacement on diagenetic processes: Examples from the Fulmar reservoir sandstones, Central North Sea. AAPG Bulletin, 76: 1024-1033. [25] Tang, L.J., Jin, Z.J., Pang, X.Q., 2002. Hydrocarbon migration and accumulation models of superimposed basin. Journal o f the University o f Petroleum, China(Edition o f Natural Science), 29(1): 9-13(in Chinese with English abstract). [26] Walderhaug, O., 1994a. Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature-history modeling. Journal o f Sedimentary Research, 64: 324-333. [27] Walderhaug, O., 1994b. Temperatures of quartz cementation in Jurassic sandstones from the Morwegian continental shelf-Evidence from fluid inclusions. Journal o f Sedimentary Research, 64: 311-323. [28] Walderhaug, O., 1996. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bulletin, 80: 731-745. [29] Wang, X.D., Jiang, Z.X., Pang, X.Q., 2003. Summarization of the paleohydrocarbon water contact restoring methods. Advance in Earth Science, 18(3): 412-419(in Chinese with English abstract). [30] Wang, Z.S., Sun, W.L., Wang, S.Q., et al., 1995. TLC-FID analysis of crude oil composition and its primary application. Oil& Gas Geology, 16(3): 224-226(in Chinese with English abstract). [31] Zhang, C.M., Fang, X.L., Zhu, J.Z., 1998. Determinning oil water contact in carbonate reservoir using pyrogenation and gas chromatography. Petroleum Exploration and Development, 25(2): 24-26(in Chinese with English abstract). [32] Zhu, Y.M., 1999. Fluid inclusion application in oil and gas exploration. Explorationist, 4(4): 29-32(in Chinese with English abstract). [33] 蔡春芳, 顾家裕, 蔡洪美, 2001. 塔中地区志留系烃类侵位对成岩作用的影响. 沉积学报, 19(1): 60-63. [34] 郭召杰, 张志诚, 贾承造, 等, 2000. 塔里木克拉通前寒武纪基底构造格架. 中国科学(D辑), 30(6): 568-575. [35] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社, 275-323. [36] 李星军, 吴海波, 席秉茹, 1998. 松辽盆地新站构造——岩性油气藏油水界面的确定. 大庆石油地质与开发, 17(1): 12-13. [37] 吕修祥, 张一伟, 金之钧, 1996. 塔里木盆地成藏旋回初论. 科学通报, 41(22): 2064-2066. [38] 庞雄奇, 金之钧, 姜振学, 等, 2002. 叠合盆地油气资源评价问题及其研究意义. 石油勘探与开发, 29(1): 9-13. [39] 汤良杰, 金之钧, 庞雄奇, 2000. 多期叠合盆地油气运聚模式. 石油大学学报, 24(4): 67-71. [40] 王显东, 姜振学, 庞雄奇, 2003. 古油气水界面恢复方法综述. 地球科学地展, 18(3): 412-419. [41] 王占生, 孙玮琳, 汪双清, 等, 1995. 原油组分TLC-FID棒色谱分析及初步应用. 石油与天然气地质, 16(3): 224-226. [42] 张春明, 方孝林, 朱俊章, 1998. 用热解和气相色谱技术确定碳酸盐岩储集层油水界面. 石油勘探与开发, 25(2): 24-26. [43] 朱扬明, 1999. 流体包裹体在油气勘探中的应用. 勘探家, 4(4): 29-32.