Evaluation of the Permeability of Rock Masses around the Equalized Room with Atmoseal at Ziyili Hydropower Station, Sichuan Province
-
摘要: 结合自一里水电工程气垫式调压室设计厂房区岩体渗透性研究, 提出了从定性分析到定量计算与评价, 系统刻画岩体渗透性与分区评价, 以满足气垫式调压室设计要求的实用方法.该方法以基础地质与水文地质研究为背景, 从系统全面的裂隙测量与统计分析中, 获取岩体裂隙空间发育规律和裂隙方向、隙宽、迹长、间距和裂隙率等统计特征值, 运用裂隙岩体渗透张量理论, 得出分布式岩体渗透主值和综合渗透系数; 在此基础上, 进行岩体渗透性分区与评价.评价得出: 花岗岩夹变质砂岩透镜体的厂区岩体渗透性总体随深度变化, 受接触带影响局部渗透性呈强弱交替变化; 区内裂隙岩体的渗透性分3级, 近地表浅层岩体渗透性较强, 综合渗透系数为n×100 m/d~n×10-1 m/d, 调压室区为中等~弱渗透性岩体, 渗透系数为n×10-2 m/d~n×10-4 m/d.Abstract: Ziyili Hydropower Station in Sichuan Province uses an equalized room fitted with atmoseal, which needs a more precise investigation on the permeability of rock masses around the power house. This paper proposes an effective method that systematically characterizes the permeability of rock masses, from qualitative analyses to quantitative analyses. Based on a study of basic geology and hydrogeology conditions, we measured the geometric parameters of fractures (such as orientation, aperture, trace length, space and fracture frequency) and obtained their characteristic statistical values. We then calculated the main value and comprehensive value of the permeability tensor using permeability tensor theory, and finally divided the rock masses around the power house into a few permeability subareas. The general permeability of the rock masses around the power house varies with depth and the local permeability varies alternately between the higher and the lower due to the effect of the contact strip. The permeability can be divided into three grades. The permeability of rock masses near the surface is higher (n×100 m/d~n×10-1 m/d) and permeability of rock masses around the equalized room with atmoseal is moderate to lower (n×10-2 m/d~n×10-4 m/d).
-
表 1 厂址区平硐裂隙产状分组
Table 1. Groups of fracture orientation in adits at power-house site area
表 2 平硐测点线、面裂隙率统计
Table 2. Statistics of line fracture frequency and surface fracture frequency in adits
表 3 厂区平硐岩体渗透张量平均值与偏大值部分结果
Table 3. Statistics of average value and higher value of permeability tensor of fractured rock in adits at power-house site area
表 4 厂址区岩体渗透性分区说明
Table 4. Permeability zoning explanation of fractured rocks at power-house site area
表 5 厂址区岩体渗透性分区与其他指标分区比较
Table 5. Comparison of permeability zoning and other indexes zoning of fractured rock at powerhouse site area
-
[1] Han, D. M., Liang, X., Zhang, X. L., 2004. Application of hydrochemistry components analysis to engineering survey. China Rural Water and Hydropower, (12): 110-113(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNSD200412041.htm [2] Han, D. M., Liang, X., Zhang, X. L., 2003. Application of hydrochemistry components analysis to engineering hydrogeology: A case study of hydrogeological condition analysis at Ziyili Hydroplant in Sichuan. In: Wang, Y. X., ed., Proceedings of the International Symposium on Water Resources and the Urban Environment. China Environmental Science Press, Beijing, 68-72. [3] Pan, H. Y., Liang, X., Wan, J. W., et al., 2002. Method of constructing fracture network system by the pump-in tests: A case study on the basalt around the dam area of Xiluodu Hydroelectric Station. Geological Science and Technology In formation, 21(1): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ200201007.htm [4] Tian, K. M., Wan, L., 1989. Study and evaluation on anisotropic fractured rock permeability. Xueyuan Press, Beijing(in Chinese). [5] Wang, M. Y., Chen, J. S., Wan, L., 2002. Groundwater(fluid)flow modeling in fractured rocks via discrete fracture fluid flow approach. Earth Science—Journal of China University of Geosciences, 27(1): 90-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200201019.htm [6] Wu, Y.Q., Zhang, Z. Y., 1995. An introduction to rock mass hydraulics. Southwest Jiaotong University Press, Chengdu(in Chinese). [7] Yuan, S.G., Wang, Z., 1998. Source and analysis of biases in joint surveys. Journal of Baotou University of Iron and Steel Technology, 17(4): 253-257(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BTGX804.001.htm [8] Zhao, W., Tang, C. A., 1998. The measure theory of discontinuities spacing and trace length. China Mining Magazine, 7(3): 36-38(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA199803015.htm [9] 韩冬梅, 梁杏, 张晓伦, 2004. 水化学分析方法在水电工程勘探中的应用. 中国农村水利水电, (12): 110-113. doi: 10.3969/j.issn.1007-2284.2004.12.041 [10] 潘欢迎, 梁杏, 万军伟, 等, 2002. 利用压水试验构建裂隙网络系统的方法探讨——以溪洛渡水电站坝区玄武岩为例. 地质科技情报, 21(1): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201007.htm [11] 田开铭, 万力, 1989. 各向异性裂隙介质渗透性的研究与评价. 北京: 学苑出版社. [12] 王明玉, 陈劲松, 万力, 2002. 离散裂隙渗流方法与裂隙化渗透介质建模. 地球科学——中国地质大学学报, 27(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201019.htm [13] 仵彦卿, 张倬元, 1995. 岩体水力学导论. 成都: 西南交通大学出版社. [14] 袁绍国, 王震, 1998. 节理测量误差的来源及其分析. 包头钢铁学院学报, 17(4): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-BTGX804.001.htm [15] 赵文, 唐春安, 1998. 结构面间距和迹长的测量理论. 中国矿业, 7(3): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA199803015.htm