• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    原油粘度变化对水驱油开发动态影响的数学模拟方法

    鞠斌山 樊太亮 王晓冬 张金川

    鞠斌山, 樊太亮, 王晓冬, 张金川, 2006. 原油粘度变化对水驱油开发动态影响的数学模拟方法. 地球科学, 31(3): 378-383.
    引用本文: 鞠斌山, 樊太亮, 王晓冬, 张金川, 2006. 原油粘度变化对水驱油开发动态影响的数学模拟方法. 地球科学, 31(3): 378-383.
    JU Bin-shan, FAN Tai-liang, WANG Xiao-dong, ZHANG Jin-chuan, 2006. Mathematical Simulation of the Effect of the Change in Oil Viscosity on Water Drive Performance. Earth Science, 31(3): 378-383.
    Citation: JU Bin-shan, FAN Tai-liang, WANG Xiao-dong, ZHANG Jin-chuan, 2006. Mathematical Simulation of the Effect of the Change in Oil Viscosity on Water Drive Performance. Earth Science, 31(3): 378-383.

    原油粘度变化对水驱油开发动态影响的数学模拟方法

    基金项目: 

    国家自然科学基金项目 40272052

    详细信息
      作者简介:

      鞠斌山(1970—), 男, 讲师, 主要从事油气田开发工程和油藏描述方面的教学和科研工作.E-mail: jubs2936@163.com

    • 中图分类号: TE319

    Mathematical Simulation of the Effect of the Change in Oil Viscosity on Water Drive Performance

    • 摘要: 为了研究注水开发油田原油粘度升高对开发效果的影响, 通过对实际油藏原油粘度统计, 回归出了原油粘度增长模型.在三维三相黑油渗流模型的基础上, 建立了一个原油粘度随含水和压力变化的油藏渗流数学模型, 并采用有限差分方法建立了相应的数值模型, 采用超松弛法对该模型进行了求解, 用Fortran90语言开发了一个新的数值模拟器.应用该模拟器模拟了不同的原油粘度变化规律对水驱效果的影响, 并与常规模拟器的结果进行了对比.结果表明: 初始水油粘度比为1∶10、含水达到98%时, 粘度增长指数由0增加到0.02, 对应的原油采出程度由44.80%降低到34.29%.目前商业软件中忽略了原油粘度随含水升高而增加的因素, 使得预测的采收率明显偏高.

       

    • 图  1  太平油田原油粘度升高与含水关系

      Fig.  1.  Relation of the increase in viscosity of oil from Taiping oilfield and water-cut

      图  2  含水率和粘度增长指数对原油粘度变化的影响

      Fig.  2.  Effects of water-cut and viscosity increase exponent on the viscosity increase factors

      图  3  油水相对渗透率曲线

      Fig.  3.  Relative permeability curves of oil and water

      图  4  粘度增长指数对日产油水速度(a)和采出程度(b)的影响

      Fig.  4.  Effects of viscosity increase exponent on production rates of oil and water (a) and oil recovery (b)

      图  5  5年后剩余油饱和度分布

      a.b= 0.000;b.b= 0.010;c.b= 0.020

      Fig.  5.  Residual oil distribution after 5 years

      表  1  主要参数

      Table  1.   Main parameters

      表  2  粘度增长指数对含水率和采出程度的影响

      Table  2.   Effects of viscosity increase exponent on water-cut and oil recovery

    • [1] Chen, Y.S., 1993. The countermeasures against the oil reservoir heterogeneity. Petroleum Industry Press, Beijing, 133-134 (in Chinese).
      [2] Deng, Y.Z., Xu, S.Y., 2003. Dynamic model of filterate parameters in delta reservoir. Acta Petrolei Sinica, 24(2): 61-64 (in Chinese with English abstract).
      [3] Gai, Y.J., Lü, D.L., Gu, Y.L., et al., 2000. Numerical simulation by stages about the reservoir at high water cut period. Oil & Gas Recovery Technology, 7 (1): 54-56 (in Chinese with English abstract).
      [4] Guo, Y.L., Su, G.Y., 1998. An analysis of factors affecting the precision of log interpretation of water cut in a watered out reservoir. Petroleum Exploration and Development, 25 (4): 59-60 (in Chinese with English abstract).
      [5] Han, D.K., Chen, Q.L., Yan, C.Z., 1993. Oil reservoir simulation. Petroleum Industry Press, Beijing, 35-36 (in Chinese).
      [6] Jiang, H.Q., Gu, J. W., Chen, Y. M., et al., 1999. The fine numerical simulation of the distribution of residual oil. Journal of the University of Petroleum, China, 23 (5): 31-34 (in Chinese with English abstract).
      [7] Ju, B.S., Wang, C.T., Li, S.T., et al., 2003. Dynamic displacement characteristics of water driving oil under the variation of crude oil viscosity. Journal of Xi'an PetroleumInstitute, 18(1): 17 -20 (in Chinese with English abstract).
      [8] Klara, S. M., Hemanth-Kumar, K., 1987. Comparisons of computational efficiencies of different equations of state and transport property correlations in a compositional simulator. SPE paper 16942, Proceedings of the 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in Dallas, TX September 27-30: 9-13.
      [9] Liu, H.Q., 2001. The special topics for methods of oil reservoir simulation. University of Petroleum Press, Dongying, 79-84 (in Chinese).
      [10] The Compilation Committee of the Scientific Series for Dagang oilfield, 1999. The practice of the development of Dagang Oilfield. Petroleum Industry Press, Beijing, 288-289 (in Chinese).
      [11] Zhao, Y. H., Zhao, X.J., Weng, D. L., et al., 1999. The changes of oil reservoir formation rock properties in high water cut production stage on Xia'ermen oilfield. Acta Petrolei Sinica, 20 (1): 44-45 (in Chinese with English abstract).
      [12] 陈永生, 1993. 油田非均质对策论. 北京: 石油工业出版社, 133-134.
      [13] 大港油田科技丛书编委会, 1999. 大港油田开发实践. 北京: 石油工业出版社, 288-289.
      [14] 邓玉珍, 徐守余, 2003. 三角洲储层渗流参数动态模型研究. 石油学报, 24(2): 61-64. doi: 10.3321/j.issn:0253-2697.2003.02.013
      [15] 盖英杰, 吕德灵, 郭元灵, 等, 2000. 高含水期油藏分段数值模拟. 油气采收率技术, 7 (1): 54-56.
      [16] 郭元岭, 苏国英, 1998. 水淹油层含水率解释精度影响因素分析. 石油勘探与开发, 25 (4): 59-60. doi: 10.3321/j.issn:1000-0747.1998.04.018
      [17] 韩大匡, 陈钦雷, 闫存章, 1993. 油藏数值模拟. 北京: 石油工业出版社, 35-36. https://xuewen.cnki.net/CCND-SHYO202111110024.html
      [18] 姜汉桥, 谷建伟, 陈月明, 等, 1999. 剩余油分布规律的精细数值模拟. 石油大学学报, 23 (5): 31-34. doi: 10.3321/j.issn:1000-5870.1999.05.009
      [19] 鞠斌山, 王春田, 李师涛, 等, 2003. 变原油粘度油水两相流驱替特征研究. 西安石油学院学报, 18 (1): 17-20. doi: 10.3969/j.issn.1673-064X.2003.01.006
      [20] 刘慧卿, 2001. 油藏数值模拟方法专题. 东营: 石油大学出版社, 79-84.
      [21] 赵跃华, 赵新军, 翁大丽, 等, 1999. 注水开发后期下二门油田储层特征. 石油学报, 20(1): 44-45. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB901.008.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3620
    • HTML全文浏览量:  139
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-12-13
    • 刊出日期:  2006-05-25

    目录

      /

      返回文章
      返回