[1] |
Agterberg, F.P., 1995. Power-law versus lognormal model in mineral exploration. In: Mitri, H.S., ed., Computer applications in the mineral industry. Proceedings of the Third Canadian Conference on Computer Applications in the Mineral Industry, 17-26.
|
[2] |
Agterberg, F.P., 2001. Multifractal simulation of geochemical map patterns. Earth Science-Journal of China University of Geosciences, 26(2): 142-151(in Chinese with English abstract).
|
[3] |
Bak, P., 1996. How nature works. Springer-Verlag, New York.
|
[4] |
Bonham-Carter, G.F., 1994. Geographic information system for geosciences: Modelling with GIS. Pergamon Press, Oxford, 1-398.
|
[5] |
Chacron, M., I。'Heureux, I., 1999. A new model of periodic precipitation incorporating nucleation, growth and ripening. Physics Letters A, 263: 70-77. doi: 10.1016/S0375-9601(99)00709-4
|
[6] |
Chen, Z., Cheng, Q, Chen, J., 2005. Significance of fractal measure in local singularity analysis of multifractal model. In: Cheng, Q M, 130nham-Carter, G., eds., Proceedings of IAMG'05: GIS and Spatial Analysis, 1: 475 -480.
|
[7] |
Cheng, Q M, 1994. Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the MitchellSulphurets area, northwestern British Columbia(Dissertation). Univ. Ottawa, Ottawa, 268.
|
[8] |
Cheng, Q M., Agterberg, F.P., 1996. Comparison between two types of multifractal modeling. Mathematical Geology, 28(8): 1001-1016. doi: 10.1007/BF02068586
|
[9] |
Cheng, Q M., Agterberg, F.P., Ballantyne, S.B., 1994a. The separation of geochemical anomalies from background by fractal methods. Journal of Exploration Geochemistry, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
|
[10] |
Cheng, Q M., Agterberg, F.P., Bonham-Carter, G.F., 1994b. Fractal pattern integration for mineral potential mapping. Proceedings IAMG'94, MontTremblant, Quebec., Oct., 74-80.
|
[11] |
Cheng, Q M, Xu, Y., Grunsky, E, 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation-In: Lippard, J.L., Naess, A, Sinding-Larsen, R., eds., Proc. Int. Assoc. Mathematical Geology Meeting, Trondheim, Norway, I: 87-92.
|
[12] |
Cheng, Q M., 1995. The perimeter-area fractal model and its application to geology. Mathematical Geology, 27(1): 69-82. doi: 10.1007/BF02083568
|
[13] |
Cheng, Q M., 1997a. Fractal/multifractal modeling and spatial analysis. Keynote lecture in Proceedings of the International Association for Mathematical Geology Conference, 1: 57-72.
|
[14] |
Cheng, Q M., 1997b. Discrete multifractals. Journal of Mathematical Geology, 29(2): 245-266. doi: 10.1007/BF02769631
|
[15] |
Cheng, Q M., 1999a. Spatial and scaling modeling for geo chemieal anomaly separation. Journal of Exploration Geochemistry, 65: 175-194. doi: 10.1016/S0375-6742(99)00028-X
|
[16] |
Cheng, Q M., 1999b. Multifractality and spatial statistics. Computers & Geosciences, 25(9): 949-961.
|
[17] |
Cheng, Q M., 1999c. The gliding box method for multifractal modeling. Computers & Geosciences, 25(9): 1073-1079.
|
[18] |
Cheng, Q M., 2000. GeoData analysis system(GeoDAS)for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University, Nov. 1 to 3, 2000, 204. Available at www. gisworld. org/geodas.
|
[19] |
Cheng, Q M, 2003a. Non-linear mineralization models and information processing methods for prediction of unconventional mineral resources. Earth Science-Journal of China University of Geosciences, 28(4): 445-454(in Chinese with English abstract).
|
[20] |
Cheng, Q M., 2003b. Fractal and multifraetal modeling of hydrothermal mineral deposit spectrum: Application to gold deposits in the Abitibi area, Canada. Journal of China University of Geosciences, 14(3): 199-206.
|
[21] |
Cheng, Q M, 2004a. Quantifying generalized self-similarity analysis of spatial patterns for mineral resource assessments. Earth Science-Journal of China University of Geosciences, 29(6): 733-744(in Chinese with English abstract).
|
[22] |
Cheng, Q.M., 2004b. A new model for quantifying anisotropic scale invariance and decomposing of complex patterns. Mathematical Geology, 36(3): 345-360.
|
[23] |
Cheng, Q M., 2005a. Multifractal distribution of Eigenvalues and Eigenvectors from 2D multiplicative cascade multifractal fields. Mathematical Geology, 37(8): 915-927. doi: 10.1007/s11004-005-9223-1
|
[24] |
Cheng, Q M, 2005b. A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: Leuangthong, O.D., Clayton, v., eds., Geostatistics Banff 2004. Quantitative Geology and Geostatistics, 14(2): 1017-1025(Springer).
|
[25] |
Cheng, Q M, 2005c. Muhiplicative cascade mineralization processes and singular distribution of mineral deposit associated geochemical anomalies. In: Cheng, Q M, Bonham-Carter, G., eds., Proceedings of Annual Conference of the|nternational Association for Mathematical Geology(IAMG'05), GIS and Spatial Analysis, l: 297-302.
|
[26] |
Cheng, Q M, 2006. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., ed., GIS applications in earth sciences. Geological Association of Canada Special Book, 289-300.
|
[27] |
Falconer, K., 2004. Fractals and chaos: The Mandelbrot set and beyond. Nature, 430(6995): 18-20.
|
[28] |
Feder, J., 1988. Fractals. Plenum Press, New York, 283.
|
[29] |
Fowler, A D., 1994. The role of geopressure zones in the formation of hydrothermal Pb-Zn Mississippi Valleytype mineralization in sedimantary basins. In: Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geol. Soci. Spec. Pub., 78: 293-300.
|
[30] |
Fowler, A D., I. 'Heureux, I., 1996. Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories. Canadian Mineralogist, 34(Part 6): 1211-1222.
|
[31] |
Giles, J., 2004. Benoit Mandelbrot: Father of fractals. Nature, 432(7015): 266-267. doi: 10.1038/432266a
|
[32] |
Herzfeld, U.C., 1999. Geostatistical interpolation and classification of remote sensing data from ice surfaces. International Journal of Remote Sensing, 20(2): 307-327. doi: 10.1080/014311699213460
|
[33] |
L'Heureux, I., Fowler, A D., 2000. A simple model of flow pattern in overpressured sedimentary basins with heat transport and fracturing. J. Geophys. Res., 105: 23741—23752. doi: 10.1029/2000JB900198
|
[34] |
Li, Q.M., Cheng, Q M, 2004. Fractal singular-value(Eginvalue)decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science-Jourhal of China University of Geosciences, 29(1): 109-118(in Chinese with English abstract).
|
[35] |
Li, Q.M., Cheng, Q M, 2006. Multifractal modeling in Walsh domain and signal processing in GIS environment. Chinese Journal of Geophysics(in Chinese with English abstract)(in Press).
|
[36] |
Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science, 216(4542): 185-187. doi: 10.1126/science.216.4542.185
|
[37] |
Lovejoy, S., Schertzer, D., Ladoy, P., 1987. Fractal characterization of inhomogeneous geophysical measuring networks. Nature, 319(6048): 43-44.
|
[38] |
Mandelbrot. B B, 1972. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C, eds., Statistical models and turbulence, lecture notes in physics, 12. Springer, New York, 333-351.
|
[39] |
Mandelbrot, B. B, 1982. The fractal geometry of nature. W. H. Freeman, New York, 468.
|
[40] |
Ortoleva, P., 1994. Geochemical self-organization. Oxford University Press. New York.
|
[41] |
Ottino, J.M., Muzzio, F.J., Tjiahjadi, M, et al., 1992. Chaos, symmetry, and self-similarity-exploiting order and disorder in mixing processes. Science: 257(5071): 754-760. doi: 10.1126/science.257.5071.754
|
[42] |
Schertzer, D., Lovejoy, S., 1991. Nonlinear variability in geophysics. Kluwer Academic, Dordrecht, The Netherlands, 318.
|
[43] |
Shore, M., Fowler, A.D., 1999. The origin of spinifex texture in komatites. Nature, 397(6721): 691-694. doi: 10.1038/17794
|
[44] |
Turcotte, D. L, 2002. Fractals in petrology. Lithos, 65: 261-271. doi: 10.1016/S0024-4937(02)00194-9
|
[45] |
Wang, Z.J., Cheng, Q M, 2006. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Mathematical Geology(in Press).
|
[46] |
Yu, C W., 1999. Chaos edge of large deposits and mineral districts. Earth Science Frontiers, 6(1): 85-102(in Chinese with English abstract).
|
[47] |
Yu, C.W., 2002. Complexity of geosystems: Basic issues of geological science(I). Earth Science-Journal of China University of Geosciences, 27(5): 509-519(in Chinese with English abstract).
|
[48] |
Zhang, Z., Mao, H., Cheng, Q M, 2001. Fractal geometry of element distribution on mineral surface. Mathematical Geology, 33(2): 217-228. doi: 10.1023/A:1007587318807
|
[49] |
Zhao, P.D., 1998. Geological anomaly theory and mineral deposits prediction: Advanced mineral resources assessment theory and methods. Geological Publishing House, Beijing(in Chinese).
|
[50] |
Zhao, P.D., 2004. Quantitative methods and application in geology. Higher Education Press, Beijing(in Chinese).
|
[51] |
Zhao, P.D., Chen, J.P., Zhang, S.T., 2003. Recent progress of"three components''mineral deposit prediction. Earth Science Frontiers, 10(2): 455-462(in Chinese with English abstract).
|
[52] |
Agterberg, F.P., 2001. 地球化学图纹理的多重分形模拟. 地球科学——中国地质大学学报, 26(2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102009.htm
|
[53] |
成秋明, 2003a. 非线性矿床模型与非常规矿产资源评价. 地球科学——中国地质大学学报, 28(4): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304015.htm
|
[54] |
成秋明, 2004a. 空间模式的广义自相似性分析和矿产资源评价. 地球科学——中国地质大学学报, 29(6): 733-744. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406012.htm
|
[55] |
李庆谋, 成秋明, 2004. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建. 地球科学——中国地质大学学报, 29(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401019.htm
|
[56] |
李庆谋, 成秋明, 2006. walsh列率域中多维分形模型与GIS环境下地球物理信号处理. 地球物理学报(出版中). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200706033.htm
|
[57] |
於崇文, 1999. 大型矿床和成矿区(带)在混沌边缘. 地学前缘, 6(1): 85-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY901.012.htm
|
[58] |
於崇文, 2002. 地质系统的复杂性——地质科学的基本问题(王). 地球科学——中国地质大学学报, 27(5): 509-519.
|
[59] |
赵鹏大, 1998. 地质异常理论与矿床预测: 现代矿产资源评价理论与方法. 北京: 地质出版社.
|
[60] |
赵鹏大, 2004. 定量地学方法及应用. 北京: 高等教育出版社.
|
[61] |
赵鹏大, 陈建平, 张寿庭, 2003. "三联式"成矿预测新进展. 地学前缘, 10(2): 455-462. doi: 10.3321/j.issn:1005-2321.2003.02.025
|