First Principles Calculation of Electronic Structure of Spinel Manganese Oxide Doping with Transition Metal
-
摘要: 尽管对过渡金属掺杂锰酸锂后放电平台的升高现象有众多实验研究, 但对其机理的研究却鲜见报道.采用第一原理的密度泛函理论, 计算了过渡金属M(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)掺杂尖晶石型LiMn2O4的电子结构, 并以此分析放电平台的升高机理.电子态密度分析发现由于M-3d能带的诱导作用, 出现了新的O-2p能带, 而锂脱出时获得的电子, 主要是由费米能级附近O-2p能带提供的.当过渡金属M由Ti变化到Zn时, M-3d能带逐渐向低能量的方向移动, 新的O-2p能带出现的位置也随之下移, 当Li脱出时, 需要更多的能量才能从低能量的O-2p能带上获得电子, 因而体系能够获得较高的嵌入电压.
-
关键词:
- 尖晶石型LIMN2O4 /
- 电子结构 /
- 第一原理 /
- 掺杂
Abstract: Although there has been intensive research on improving the discharge voltage plateau of lithium manganese oxide doped by transition metals, there is a lack of corresponding studies on the improvement mechanism. In this paper, we investigate the electronic structure of spinel manganese oxide doping with transition metal M (M=Ti, Cr, Fe, Co, Ni, Cu, Zn) by first principles calculation based on the density functional theory. The calculated density of states indicates that a new O-2p band induced by the M-3d band appears at the exact position of the M-3d band itself. The compensating electrons are removed from the O-2p levels neighboring the Fermi level when the Li ion is removed. The position of the M-3d band shifts gradually to the low energy direction as M varies from Ti to Zn in the transition metal row of the periodic table, and the position of the new O-2p band also shifts downward following the M-3d band. The withdrawal of lithium electrons from this low O-2p band will result in high cell voltage.-
Key words:
- spinel manganese oxide /
- electronic structure /
- first principles /
- doping
-
锂离子电池具有能量密度高、功率大、使用寿命长、安全性能好等优点, 在便携式设备、电动汽车等领域展示出了良好的应用前景, 日益受到广泛关注. 尖晶石型锰酸锂(LiMn2O4)具备资源丰富、价廉、环境友好的特点, 是最有希望的下一代正极材料之一. 纯的尖晶石型锰酸锂的放电平台为4 V左右, 实验研究表明, 通过过渡金属掺杂, 锰酸锂放电平台可以升高到5 V, 因而其能量密度也将显著提高(Song et al., 2004).由于其巨大的应用前景, 这种高能量密度的掺杂锰酸锂电极材料已经成为当今研究的热点(Markovskya et al., 2004; Park and Sun, 2004).
尽管对过渡金属掺杂锰酸锂后放电平台的升高现象有众多实验研究, 但其升高机理的研究却鲜见报道.因此, 只有对锰酸锂放电平台升高机理有清楚的认识, 才能开发出性能可靠、高能量密度的锰酸锂正极材料.本文将就此进行探讨.
1. 模型与计算方法
图 1为本文采用的尖晶石型LiMn2O4的晶胞结构模型.它包含32个氧原子、16个锰原子(占据32个八面体间隙位(16d)的1/2)、8个锂原子(占据64个四面体间隙位(8a)的1/8).掺杂时, 用一个金属原子代替一个锰原子, 即金属M掺杂后的LiMn2O4可以表示成LiM0.125Mn1.875O4(M=Ti、Cr、Fe、Co、Ni、Cu、Zn、Li、Mg、Al).计算时对晶胞中的所有原子进行优化.实验研究表明, 掺杂2.5%的钴元素时晶胞的大小只减少0.03 Å(He et al., 2005), 因此进行掺杂计算时可以忽略晶胞参数的调整, 可采用实验中标准的晶胞参数, 即a=b=c= 0.824 2 nm, α=β=γ=90°(Xia and Yoshio, 1997), 理论计算也表明采用此近似不会影响体系的电子结构性质(Shi et al., 2003).
本文所有计算都采用第一原理密度泛函理论中的广义梯度近似计算方法(Tasnádi and Nagy, 2002). 计算是在Siesta软件下完成的(Artacho et al., 1999), 它对成百个原子的系统能够进行标准的密度泛函计算.用超软赝势来描述中心电子, 用双ζ的数字基组来描述价电子, 并考虑原子的自旋极化.为精确描述LiMn2O4的原子轨道, 使用广义梯度近似法(GGA), 它对很多材料都能提供非常精确的结构信息和能量信息.平面波基组的截止能量为200 Ry. 计算采用周期边界条件, 自洽迭代过程在简约布里渊区中使用了3×3×3个k点.
2. 结果与讨论
图 2为LiM0.125Mn1.875O4(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)中Mn-3d、M-3d和O-2p能带的分态密度(PDOS).由图 2可知, Mn-3d、M-3d和O-2p能带之间的相互作用决定了体系的电子结构性质, O-2p能带主要分布在低能量区, 而Mn-3d和M-3d能带主要位于费米能级附近的高能量区, 掺杂M后, Mn-3d和O-2p能带的形状没有发生明显的改变, 但是, 由于Mn和O间相对位置的调整, Mn-3d和O-2p能带的位置明显地向低能量方向移动, 同时费米能级也相应地由-3 eV下移到-4.6 eV左右.然而, 仔细对比图 2中的各种掺杂情况就会发现, 当M由元素周期表中第四周期的Ti变化到Zn时, M-3d逐渐向低能量的方向移动, 即M-3d与O-2p能带间的带隙逐渐减小, 说明M-3d与O-2p之间的作用逐渐增强.
图 2的局部放大后能更清楚地看出M-3d与O-2p能带的相互作用, 如图 3所示.在形成M-3d能带的位置上, 出现了新的O-2p能带, 这种新的O-2p能带应是由M-3d能带诱导所致, 且随着M-3d能带逐渐向低能量的方向移动, 新的O-2p能带也逐渐向低能方向移动, 因此O的平均价态变得越来越负, 系统的静电能也越来越低.因此当Li脱出时, 需要更多的能量才能从较低的O-2p能带上获得电子, 根据嵌入电压的计算公式(Ning et al., 2006), E=-ΔGT/zF(其中, E表示嵌入电压, ΔGT表示等温条件下系统自由能的降低, z表示转移的电荷数, F表示法拉第常数), 如果新的O-2p能带出现位置的能量越低, 体系可以获得的嵌入电压就越高.如果有更多的电子转移给O, 体系的嵌入电压就会越高, 这与Aydinol et al.(1997)的观点是一致的.因此, 可以推断获得的这种高的嵌入电压, 主要是由费米能级附近新的O-2p能级决定的, 而不是由费米能级附近的M-3d能级决定的, 这与传统的认识是不同的.实际上, 锂脱出时获得的电子, 主要是由费米能级附近O-2p能带(图 3中已涂黑部分)补偿的, 而不是由低能级的O-2p能带提供319地球科学———中国地质大学学报第31卷的, 这与Ceder et al.(1997)认为的电子转移发生在Li与O之间是一致的, 与传统认为的电子由Mn转移给Li是不同的.
本文还对LiM0.125Mn1.875O4(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)中Li、Mn、O、M离子的净电荷进行了计算, 结果表明, 掺杂后锂离子的平均净电荷(+0.78)几乎没有变化, 与它的价键理论电荷值+1.00比较接近, 说明在尖晶石LiMn2O4晶体中, Li离子是相对独立的, 与Mn和O的相互作用不强, Li离子可以在尖晶石骨架中近似自由地嵌入/ 脱出, 这与实验结果(刘韩星等, 2001)和上述分态密度分析是一致的.虽然掺杂后Mn、O离子的净电荷都有所改变, 但是氧离子的平均净电荷(-0.58)、锰离子的平均净电荷(+1.74)与它们的价键理论电荷值-2、+3/+4相差较大, 这说明Mn-O键中离子键成分较少, 而共价键成分较多.
3. 结论
本文研究表明, 由于M-3d能带的诱导作用, 出现新的O-2p能带, 当过渡金属M由Ti变化到Zn时, M-3d能带逐渐向低能量的方向移动, 新的O-2p能带出现的位置也随之下移, 当Li脱出时, 需要更多的能量才能从新的O-2p能带上获得电子, 体系能够获得更高的嵌入电压, 可见, 这种高的嵌入电压, 主要是由费米能级附近新的O-2p能级决定的, 而不是由费米能级附近的M-3d能级决定的; 锂脱出时获得的电子, 主要是由费米能级附近O-2p能带提供的, 说明电子转移是发生在Li和O之间, 与传统认为的发生在Mn和Li之间是不同的.
-
-
[1] Artacho, E., Sánchez-Portal, D., Ordejón, P., et al., 1999. Linear-scaling ab-initio calculations for large and complex systems. Phys. Status Solidi. B, 215: 809-817. doi: 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0 [2] Aydinol, M.K., Kohn, A.F., Ceder, G., et al., 1997. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B, 56: 1354-1365. doi: 10.1103/PhysRevB.56.1354 [3] Ceder, G., Aydinol, M.K., Kohn, A.F., 1997. Application of first-principles calculations to the design of rechargeable Li-batteries. Comput. Mater. Sci., 8: 161-169. doi: 10.1016/S0927-0256(97)00029-3 [4] He, X.M., Li, J.J., Cai, Y., et al., 2005. Preparation of codoped spherical spinel LiMn2O4cathode materials for Liion batteries. Journal of Power Sources, 150: 216-222. doi: 10.1016/j.jpowsour.2005.02.029 [5] Liu, H.X., Zhou, Z.P., Zhao, S.X., 2001. The microwave synthesis of LiMn2O4 electron materials. Journal of Physical Chemistry, 17: 702-707(in Chinese with English abstract). [6] Markovskya, B., Talyossef, Y., Salitra, G., et al., 2004. Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries. Electrochemistry Communications, 6: 821-826. doi: 10.1016/j.elecom.2004.06.005 [7] Ning, L.C., Wu, J.P., Zhou, C.G., et al., 2006. On the influence of sequential lithium insertions on the physical properties of spinel manganese oxide. International Journal of Quantum Chemistry(in Press). [8] Park, S.H., Sun, Y.K., 2004. Synthesis and electrochemical properties of 5 V spinel LiNi0.5Mn1.5O4cathode materials prepared by ultrasonic spray pyrolysis method. Electrochimica Acta, 50: 429-432. [9] Shi, S. Q., Ouyang, C. Y., Wang, D.S., et al., 2003. The effect of cation doping on spinel LiMn2O4: A firstprinciples investigation. Solid State Communications, 126: 531-534. doi: 10.1016/S0038-1098(03)00234-5 [10] Song, G.M., Li, W.J., Zhou, Y., 2004. Synthesis of Mg-doped LiMn2O4powders for lithium-ion batteries by rotary heating. Materials Chemistry and Physics, 87: 162-167. doi: 10.1016/j.matchemphys.2004.05.023 [11] Tasnádi, F., Nagy, Á., 2002. Local self-interaction-free approximate exchange-correlation potentials in the variational density functional theory for individual excited states. Chemical Physics Letters, 366: 496-503. doi: 10.1016/S0009-2614(02)01612-3 [12] Xia, Y. Y., Yoshio, M., 1997. Studies on Li-Mn-O spinel system(obtained from melt-impregnation method)as a cathode for 4 V lithium batteries, Part Ⅳ. High and low temperature performance of LiMn2O4. Journal of Power Sources, 66: 129-133. [13] 刘韩星, 周振平, 赵世玺, 2001. LiMn2O4体系电极材料的微波合成. 物理化学学报, 17: 702-707. doi: 10.3866/PKU.WHXB20010807 -