Brittle Structure Sequence in the Kuqa Depression and Its Implications to the Tectonic Paleostress
-
摘要: 在对野外脆性构造(主要是节理和断层) 大量观测的基础上, 根据它们与应力的关系, 讨论了库车坳陷白垩纪末期以来的古构造应力时空变化.结果表明, 在库车坳陷脆性构造中, 早期隆升作用形成的主要发育在中生界的NEE-SWW向系统节理被晚期同构造期的在中生界与上第三系均发育的NNW-SSE向和NW-SE向节理切割并改造, 这是对区域上构造应力场在进入新近纪时从弱伸展变化到强烈挤压这一过程的响应.基于断层滑动分析的古应力反演结果显示, 此时盆山边界处以近N-S向伸展应力状态占主导, 而坳陷内部则表现为近N-S向和NW-SE向挤压应力状态.说明在进入新近纪后, 最大主应力(σ1) 方向从垂向变成水平, 应力场发生了转变.此后的天山快速垂向隆升是库车坳陷北缘和内部应力状态存在差异的原因.Abstract: In order to understand the time-space changes of the Cenozoic tectonic paleostress in the Kuqa depression, detailed field observations and measurements were carried out. Paleostress evolution history is discussed from the Late Cretaceous, according to the relationship between brittle structures and stresses. Their sequence relation is inferred from field investigations and the calculated results indicate that the early ENE-WSW systematic joints caused by regional uplifting were cut and reworked by late NNW-SSE and NW-SE systematic joints. This corresponds to the change of regional stresses from weak extension to strong compression since the beginning of the Neogene.Resultsof paleostress inversion based on large amounts of fault-slip data display a stress pattern with near N-S extension on the basin margin and NW-SE compression in the basin interior. So at the beginning of the Neogene, the stress field changed and the maximal principal stress σ1 switched from vertical to horizontal. The rapid vertical uplifting of the Tianshan Mountains might be responsible for the stress difference between the basin range and interior.
-
Key words:
- brittle structures /
- joint /
- fault /
- paleostress /
- Kuqa depression
-
表 1 系统节理与共轭剪切破裂的序列关系及其可能的应力场状态
Table 1. Sequence of systematic joints and shear fractures and possible paleostress state they correspond to
-
[1] Angelier, J., 1994. Fault slip analysis and palaeostress reconstruction. In: Hancock, P.L., ed., Continental deformation. Oxford Press, London, 53-100. [2] Bahat, D., 1991. Tectonofractography. Springer Verlag, Heidelberg, 1-354. [3] Delvaux, D., 1993. The TENSOR program for reconstruction: Examples from the East African and the Baikal rift zones. Terra Abstracts, Abstract Supplement to Terra Nova, 5: 216. [4] Delvaux, D., Moeys, R., Stapel, G., 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282: 1-38. doi: 10.1016/S0040-1951(97)00210-2 [5] Deng, Q.D., Feng, X.Y., Zhang, P.Z., et al., 2000. Active tectonics in Tianshan mountains. Seismological Press, Beijing, 373-385(in Chinese). [6] Dupin, J., Sassi, W., Angelier, J., 1993. Homogeneous stress hypothesis and actual fault slip: A distinct element analysis. Journal of Structural Geology, 15(8): 1033-1043. doi: 10.1016/0191-8141(93)90175-A [7] Engelder, T., 1985. Loading paths to joint propagation during cycle and example of the Appalachian plateau, USA. Journal of Structural Geology, 7: 459-476. doi: 10.1016/0191-8141(85)90049-5 [8] Engelder, T., Geiser, P., 1980. On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian plateau, New York. Journal of Geophysical Research, 85(B11): 6319-6341. doi: 10.1029/JB085iB11p06319 [9] Eyal, Y., Gross, M.R., Engelder, T., et al., 2001. Joint development during fluctuation of the regional stress field in southern Israel. Journal of Structural Geology, 23: 279-296. doi: 10.1016/S0191-8141(00)00096-1 [10] Fabbri, O., Gaviglio, P., Gamond, J.F., 2001. Diachronous development of master joints of different orientations in different lithological units within the same forearc-basin deposits, Kyushu, Japan. Journal of Structural Geology, 23: 239-246. doi: 10.1016/S0191-8141(00)00093-6 [11] Hancock, P.L., 1991. Determining contemporary stress directions from neotectonic joint systems. Philosophical Transactions of Royal Society of London, A337: 29-40. [12] Hendrix, M.S., Dumitru, T.A., Graham, S.A., 1994. Late Oligocene-Early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology, 22: 487-490. [13] Jamison, W.R., 1992. Stress controls on fold thrust style. In: McClay, K. R., ed., Thrust tectonics. Chapman & Hall, London, 155-165. [14] Jia, C.Z., 1997. Tectonics and petroleum of Tarim basin of China. Petroleum Industry Press, Beijing, 348-357(in Chinese). [15] Liu, H.F., Wang, Z.C., Xiong, B.X., et al., 2000. Coupling analysis of Mesozoic-Cenozoic foreland basin and mountains system in central and western China. Earth Science Frontiers, 7(3): 55-72(in Chinese with English abstract). [16] Lu, H.F., Jia, D., Chen, C.M., et al., 1999. Nature and timing of the Kuqa Cenozoic structures. Earth Science Frontiers, 6(4): 215-221(in Chinese with English abstract). [17] Petit, J.P., 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology, 9(5/6): 597-608. [18] Wang, Q.C., Zhang, Z.P., Lin, W., 2003. Tertiary fault active feature and stress state in the boundary of Kuqa basin and Tianshan. Chinese Scicence Bulletin, 48(24): 2553-2559(in Chinese). doi: 10.1360/csb2003-48-24-2553 [19] Wang, Q.C., Zhang, Z.P., Lin, W., et al., 2004. Neogene deformation of the Kuqa-Tianshan basin-range system. Science in China(Series D), 47(Suppl. 1): 53-65. [20] Wang, X., Jia, C.Z., Yang, S.F., 2002. Geometry and kinematics of the Kuqa fold and thrust belt in the southern Tianshan. Chinese Journal of Geology, 37(3): 372-384(in Chinese with English abstract). [21] Yin, A., Nie, S., Craig, P., 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17 (1): 1-27. doi: 10.1029/97TC03140 [22] Zhang, Z.P., 2004. Study on Tertiary brittle microtectonics of the Kuqa depression-South Tianshan basin-range system(Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing(in Chinese with English abstract). [23] Zhang, Z.P., Wang, Q.C., 2004. Development of joints and shear fractures in Kuqa depression and its implication to regional stress field switching. Science in China(Series D), 47(Suppl. 2): 74-85. [24] Zhang, Z.P., Wang, Q.C., Lin, W., et al., 2004. Tertiary fault-slip analysis and paleostress reconstruction in Kuqa depression. Chinese Journal of Geology, 39(4): 496-506(in Chinese with English abstract). [25] 邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造. 北京: 地震出版社, 373-385. [26] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社, 348-357. [27] 刘和甫, 汪泽成, 熊宝贤, 等, 2000. 中国中西部中、新生代前陆盆地与挤压造山带耦合分析. 地学前缘, 7 (3): 55-72. doi: 10.3321/j.issn:1005-2321.2000.03.006 [28] 卢华复, 贾东, 陈楚铭, 等, 1999. 库车新生代构造性质和变形时间. 地学前缘, 6 (4): 215-221. doi: 10.3321/j.issn:1005-2321.1999.04.003 [29] 王清晨, 张仲培, 林伟, 2003. 库车盆地-天山边界的新近纪断层活动性质与应力状态. 科学通报, 48 (24): 2553-2559. doi: 10.3321/j.issn:0023-074X.2003.24.013 [30] 王清晨, 张仲培, 林伟, 等, 2004. 库车-南天山盆山体系新近纪变形特征, 中国科学(D辑), 34 (增刊1): 45-55. [31] 汪新, 贾承造, 杨树锋, 2002. 南天山库车褶皱冲断带构造几何学和运动学. 地质科学, 37 (3): 372-384. doi: 10.3321/j.issn:0563-5020.2002.03.014 [32] 张仲培, 2004. 库车坳陷-南天山盆山系统第三纪脆性构造研究(博士论文). 北京: 中国科学院地质与地球物理研究所. [33] 张仲培, 王清晨, 林伟, 等, 2004. 库车坳陷第三纪断层滑动分析与古构造应力恢复. 地质科学, 39 (4): 496-506. doi: 10.3321/j.issn:0563-5020.2004.04.005