• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    0.1 GPa块状榴辉岩脱水部分熔融: 局部熔融体系和温度的影响

    姜杨 周汉文 杨启军 徐学纯 马瑞

    姜杨, 周汉文, 杨启军, 徐学纯, 马瑞, 2006. 0.1 GPa块状榴辉岩脱水部分熔融: 局部熔融体系和温度的影响. 地球科学, 31(1): 121-128.
    引用本文: 姜杨, 周汉文, 杨启军, 徐学纯, 马瑞, 2006. 0.1 GPa块状榴辉岩脱水部分熔融: 局部熔融体系和温度的影响. 地球科学, 31(1): 121-128.
    JIANG Yang, ZHOU Han-wen, YANG Qi-jun, XU Xue-chun, MA Rui, 2006. Dehydration Partial Melting Experiment on Solid Eclogite at 0.1 GPa: The Influence of Localized Melting System and Temperature. Earth Science, 31(1): 121-128.
    Citation: JIANG Yang, ZHOU Han-wen, YANG Qi-jun, XU Xue-chun, MA Rui, 2006. Dehydration Partial Melting Experiment on Solid Eclogite at 0.1 GPa: The Influence of Localized Melting System and Temperature. Earth Science, 31(1): 121-128.

    0.1 GPa块状榴辉岩脱水部分熔融: 局部熔融体系和温度的影响

    基金项目: 

    教育部科学技术研究重点项目 02027

    详细信息
      作者简介:

      姜杨(1980-), 女, 硕士研究生, 研究方向为变质岩岩石学.E-mail:Jiangyang_tqt@163.com

    • 中图分类号: P589.1;P588.3

    Dehydration Partial Melting Experiment on Solid Eclogite at 0.1 GPa: The Influence of Localized Melting System and Temperature

    • 摘要: 选取了湖北英山东冲河含有含水矿物黑云母和角闪石的退变质榴辉岩块状样品, 在0.1 GPa的恒压下, 分别进行了750、800、850、900℃四个温阶、恒温加热4 h的开放体系的脱水部分熔融实验.熔融从含水矿物的脱水暗化开始, 850℃时出现玻璃质熔体.镜下观察显示, 熔体主要分布在后成合晶边界、熔融程度最高的样品顶端、石英颗粒边界及裂隙内部这3个局部熔融体系内.受局部体系内部物质组成的控制, 同一温阶、不同体系内的熔体成分变化很大, 呈基性、中性和酸性.随着温度的升高, 同一体系内的熔体成分均向酸性方向演化.该实验结果表明, 恒压下局部熔融体系内物质组成的不同和温度的变化是影响熔体成分的2个重要因素, 这为理解榴辉岩块状样品的脱水部分熔融行为及与其他基性变质岩类的熔融行为进行对比提供了实验依据.

       

    • 图  1  英山东冲河退变质榴辉岩原岩及其部分熔融过程的岩相学特征

      a.原岩退变质现象明显, 单偏光; b.750℃两类后成合晶(Bi+Ab和Hb+Ab)强烈脱水暗化, 单偏光; c.850℃初始熔融, 熔体(melt)优先出现在后成合晶和石英之间, 背散射电子像; d.900℃熔融程度最高的样品顶端中仅残留少量石英和后成合晶, 背散射电子像

      Fig.  1.  Characters and process of partial melting of retrograde eclogite from Dongchonghe in Yingshan

      图  2  850℃和900℃不同局部熔融体系内所有熔体成分在TAS岩石分类图解上的分布

      Fig.  2.  TAS diagram for all melts in different localized melt-ing systems at 850℃and 900℃

      表  1  实验样品退变榴辉岩全岩化学成分及主要矿物化学成分

      Table  1.   Bulk compositions and mineral component of the experimental sample

      表  2  英山东冲河退变榴辉岩0. 1 GPa.850℃和900 ℃时不同局部体系所有熔体的化学成分

      Table  2.   Chemical compxsitions of all melts in different localized systens by partial melting of retnograde eclogite from Dongchonghe in Yingshan at 0.1 GPa, 850 ℃ and 900 ℃

      表  3  不同局部熔融体系熔体的平均成分

      Table  3.   Average compositions of melts in different localized melting systems

    • [1] Beard, J. S., Lofgren, G. E., 1989. Effect of water on the composition of partial melts of greenstone and amphibolite. Science, 244: 195-197. doi: 10.1126/science.244.4901.195
      [2] Beard, J. S., Lofgren, G. E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kb. Journal of Petrology, 32: 365-401. doi: 10.1093/petrology/32.2.365
      [3] Brown, G. C., Fyfe, W. S., 1970. Production of granitic melts during ultrametamorphism. Contributions to Mineralogy and Petrology, 28: 310-318. doi: 10.1007/BF00388953
      [4] Clemens, J. D., 1984. Water contents of intermediate to silicic magmas. Lithos, 11: 213-287.
      [5] Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117: 394-409. doi: 10.1007/BF00307273
      [6] Green, T. H., 1982. Anatexis of mafic crust and high pressure crystallization of andesites. In: Thorpe, R. S., ed., Andesites: Orogenic andesites and related rocks. Wiley, London, 465-487.
      [7] Green, T. H., Ringwood, A. E., 1968. Genesis of the calc-alkaline igneous rock suite. Contributions to Mineralogy and Petrology, 18: 105-162. doi: 10.1007/BF00371806
      [8] Holland, T. J. B., 1996. Waters phase relations of osumilite and dehydration melting in pelitic rocks: A simple ther-modynamic model for the KFMASH system. Contributions to Mineralogy and Petrology, 124: 383-394. doi: 10.1007/s004100050198
      [9] Kar, R, 2002. High-temperature dehydration melting and decompressive P-T path in a granulite complex from the Eastern Ghats, India. Contributions to Mineralogy and Petrology, 143: 175-191. doi: 10.1007/s00410-001-0341-6
      [10] Klemme, S., Blundy, J. D. . Wood R J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmo-chimica Acta, 66(17): 3109-3123. doi: 10.1016/S0016-7037(02)00859-1
      [11] Lin, Q., Ge, W. C., Ma, R., et al., 1999. Experimental research on water loss melting of crustal rocks. Journal of Changchun University of Science and Technology, 29(3): 209-214 (in Chinese with English abstract).
      [12] Liu, F. L., Shen, Q. H., Geng, Y. S., et al., 1997. Experimental research on the cause of formation between met-amorphic reaction and dehydration melt. Science in China (Series D), 27(6): 481-487 (in Chinese).
      [13] Liu, J. Z., Lu, L. Z., Xie, H. S., et al., 1998. Dehydration-melting experiment of the Khondalite series of the northern segment in the Helan Mountains: Determina- tion and the significance of critical melt fraction. Chinese Journal of Geology, 33(4): 447-454 (in Chinese with English abstract).
      [14] Rapp, R P., Watson, E. R, Miller, C. F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean tonalities, trondhjemites. Precambrian Research, 51: 1 - 25. doi: 10.1016/0301-9268(91)90092-O
      [15] Rapp, R. P., Watson, E. R, 1995. Dehydration melting of metabasalt at 8 - 32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891
      [16] Rutter, M J., Wyllie, P. J., 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust. Nature, 331: 159-160. doi: 10.1038/331159a0
      [17] Seck, H. A., 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology, 127: 30-45. doi: 10.1007/s004100050263
      [18] Stern, C. R, Wyllie, P. J., 1978. Phase composition through crystallization intervals in basalt-andesite-H2O at 30 kbars with implications for subduction zone magmas. Am. Mineral. , 63: 641-663.
      [19] Thompson, A. B., 1982. Dehydration melting of politic rocks and the generation of H2O-undersaturated granitic fluids. American Journal of Science, 282: 1567-1595. doi: 10.2475/ajs.282.10.1567
      [20] Thompson, A. R, Tracy, R J., 1979. Model systems for ana-texis of politic rocks, Ⅱ. Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contribution to Mineralogy and Petrology, 70: 429-438. doi: 10.1007/BF00371049
      [21] Winther, K. T., 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology, 127: 43-59. doi: 10.1016/0009-2541(95)00087-9
      [22] Wolf, M R, Wyllie, P. J., 1991. Dehydration melting of solid amphibolite at 10 kbar: Textural development, liquid in-terconnectivity and applications to the segregation of magmas. Mineral Petrology, 44: 151-179. doi: 10.1007/BF01166961
      [23] Wolf, M B., Wyllie, P. J., 1994. Dehydration-melting of am- phibolite at 10 kbar: The effects of temperature and time. Contributions to Mineralogy and Petrology, 115: 369-383. doi: 10.1007/BF00320972
      [24] Wu, F. Y., 1993. The localized system and sequence of partial melting on granite. Jilin Science and Technology Publishing House, Changchun (in Chinese).
      [25] Yang, X. S., Jin, Z. M., Huenges, E., et al., 2001. Dehydration melting experiment on biotite-plagioclase gneiss from high-Himalayas: Implications for crustal anatexis of Tibet. Chinese Science Bulletin, 46(3): 246-250 (in Chinese). doi: 10.1007/BF03187179
      [26] Yaxley, G. M., Green, D. H., 1998. Reactions between eclo-gite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrol. Mitteil. , 78: 143-255.
      [27] Zhou, W. G., Xie, H. S., Liu, Y. G., et al., 2005. Partial melting of solid amphibolite at 2.0 GPa: Influence of time and temperature Science in China (Series D), 35 (4): 320-332 (in Chinese).
      [28] 林强, 葛文春, 马瑞, 等, 1999. 地壳岩石的失水熔融实验. 长春科技大学学报, 29(3): 209-214. doi: 10.3969/j.issn.1671-5888.1999.03.001
      [29] 刘福来, 沈其韩, 耿元生, 等, 1997. 变质反应与脱水熔融成因关系的实验研究. 中国科学(D辑), 27(6): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199706000.htm
      [30] 刘建忠, 卢良兆, 谢鸿森, 等, 1998. 贺兰山北段孔兹岩系脱水部分熔融实验. 地质科学, 33(4): 447-454. doi: 10.3321/j.issn:0563-5020.1998.04.007
      [31] 吴福元, 1993. 花岗岩熔融的局部体系及熔融序列. 长春: 吉林科学技术出版社.
      [32] 杨晓松, 金振民, Huenges, E, 等, 2001. 高喜马拉雅黑云斜长片麻岩脱水熔融实验: 对青藏高原地壳深熔的启示. 科学通报, 46(3): 246-250. doi: 10.3321/j.issn:0023-074X.2001.03.015
      [33] 周文戈, 谢鸿森, 刘永剐, 等, 2005. 2.0 GPa块状斜长角闪岩部分熔融——时间和温度的影响. 中国科学(D辑), 35 (4): 320-332. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200504003.htm
    • 加载中
    图(2) / 表(3)
    计量
    • 文章访问数:  3565
    • HTML全文浏览量:  88
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-08-12
    • 刊出日期:  2006-01-25

    目录

      /

      返回文章
      返回