Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Oanitoids in Yunkai Orogenic Belt, Western Guangdong Province, China
-
摘要: 云开造山带条带—眼球状(环斑)深熔花岗岩(含紫苏花岗岩)地球化学和年代学的研究表明, 绝大多数花岗岩的A/CNK > 1.1, CaO/Na2O=0.62-1.61(平均0.94, 大于0.3), Al2O3/TiO=16.6-60.6(平均23.68), 高场强元素Ta、Nb、Zr亏损, 具大陆边缘俯冲-碰撞造山带后碰撞构造环境强过铝(SP)高钾钙碱性-钙碱性花岗岩的特征, 紫苏花岗岩和片麻状含榴黑云二长花岗岩Al2O3/TiO(平均17.82)明显低于条带-眼球状(环斑)黑云二长花岗岩Al2O3/TiO(平均29.55), 显示其形成温度更高, 并具A型花岗岩的演化特征.而且从高钾钙碱性条带-眼球状(环斑)黑云二长花岗岩到钙碱性紫苏花岗岩、片麻状含榴黑云二长花岗岩, 形成时代由(465±10)Ma、(467±10)Ma变为(435±11)Ma、(413±8)Ma, 表明扬子板块与华夏板块在加里东期发生了洋—陆俯冲—碰撞造山和后碰撞的伸展—拆沉—底侵岩浆岩作用, 并且后期又经历了海西—印支期挤压抬升和伸展揭顶作用的改造, 这也为华南存在加里东期扬子板块向华夏板块的洋-陆俯冲-碰撞造山提供了重要证据.
-
关键词:
- 云开造山带 /
- 加里东期 /
- 强过铝深熔花岗岩 /
- 后碰撞构造环境 /
- 伸展-拆沉-底侵作用
Abstract: There are different theories about the genesis and age of banded-augen (rapakivi) anatectic granitoids (charnock-ite), which outcrop extensively in Yunkai region, western Guangdong Province. Their petrochemistry, chronology, defor-mational and metamorphic structures were studied. The petrochemical features of most granitoids are: A/CNK > 1. 1, Cao/Na2O=0. 62 - 1. 61 (average 0. 94, > 0.3), Al2O3/TiO=16.6-60.6 (average 23. 68), loss high field strong elements Ta、Nb、Zr, strong peraluminous high-K calc-alkaline and calc-alkaline granitoids in a post-collisional tectonic enviroment of sub-duction-collision orogenic belt in an active-continental margin. The temperatures of charnockite and gneissic garnet-bearing biotite monzonitic granite are obviously higher than that of banded-augen (rapakivi) biotite monzonitic granite, and charnockite and gneissic garnet-bearing biotite monzonitic granite with the evolutional characterics of A-type granites. From banded-granite, augen (rapakivi) biotite monzonitic granite to charnockite and gneissic garnet-bearing biotite monzonitic granite, the forming ages are (465±10)Ma, (467±10)Ma, (435±11)Ma and (413±8)Ma respectively, and become younger. These results show that there were oceanic-continental subduction-collision and post-collisional extension-delamination-underplating between the Yangtze and Cathaysia plates during the Caledonian, and they experienced compressional uplift and extensional exhumation during the Indosinian. It provides important evidence of the oceanic-continental subduction-collision of the Yangtze plate downward to the Cathaysia plate during the Caledonian in South China. -
图 2 花岗岩K2O-SO2判别图解(Le Maitre et al., 1989; Rickwood, 1989)
○.紫苏花岗岩; □.眼球状黑云二长花岗岩; △.环斑黑云二长花岗岩; ◇.片麻状含榴黑云二长花岗岩
Fig. 2. K2O vs.SiO2 discriminant diagrams for the granitoids
图 3 花岗岩Rb-(Y+Nb)判别图解和Rb-(Yb+Ta)判别图解(Pearce et al., 1984)
VAG.火山弧花岗岩; Syn-COLG.同碰撞花岗岩; WPG.板内花岗岩; ORG.洋脊花岗岩; 其余图例同图 2
Fig. 3. Rb-(Y+Nb) and Rb-(Yb+Ta) tectonic discriminant diagrams for the granitoids
图 4 花岗岩Hf-Rb-Ta判别图解(Harris et al., 1986; 图例同图 2)
Fig. 4. Hf-Rb-Ta tectonic discriminant diagrams for the granitoids
表 1 云开地区花岗岩主量和微量元素地球化学分析数据
Table 1. Major (%) and trace(μg·g-1) element analyses of the granitoids from the Yunkai area
表 2 云开地区花岗岩锆石SHRIMP U-Pb同位素分析数据
Table 2. SHRIMP U-Pb data of zircons of the granitoids from the Yunkai area
-
[1] Barbarin, B., 1999. A review of the relationships between granitoid types, origins and their geodynamic environments. Lithos, 46: 605-626. doi: 10.1016/S0024-4937(98)00085-1 [2] Condie, K. C., 1982. Plate tectonic and crustal evolution. Per-garnon Press, New York, 310. [3] Dikinson, W. R, 1975. Potash-depth (K-h) relation in continental margin and intra-oceanic magmatic arcs. Geoiogy, (3): 53-56. [4] Eby, G. N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20 (7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 [5] Ferre, E. C., Leake, B. E., 2001. Geodynamic significance of early orogenic high-K crustal and mantle melts: Example of the Corsica Batholith. Lithos, 59: 47-67. doi: 10.1016/S0024-4937(01)00060-3 [6] Gao, S., Jin, Z. M., 1997. Delamination and its geodynamical significance for the crust-mantle evolution. Geological Science and Technology Information, 16(1): 1 - 9 (in Chinese with English abstract). [7] Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geo-chemical characteristics of collision-zone magatisra In: Coward, M. P., Ries, A. C., eds., Collision tectonics. Geol. Soc. Publ., 19: 67-81. [8] Henderson, P., Pankhurst, R. J., 1984. Analytica chemistry. In: Henderson, P., ed., Rare earth element geochemistry. Elsevier Science Publishers, Amsterdam, 467-499. [9] Jin, Z. M., Gao, S., 1996. Underplating and its geodynamical significances for the evolution of crust-mantle boundary. Geological Science and Technology Information, 15 (2): 1-7 (in Chinese with English abstract). [10] Kay, R. W., Kay, S. M, 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177-189. doi: 10.1016/0040-1951(93)90295-U [11] Kay, S. M., 1994. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J. Geophys. Res., 99: 24323-24339. doi: 10.1029/94JB00896 [12] King, P. L., White, H. J. K., Chappell, B, W., et al., 1997. Characterization and origin of aluminons A-type gran- ites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38: 371-391. doi: 10.1093/petroj/38.3.371 [13] Landenberger, B. . Collins, W. J., 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelumdi complex, eastern Australia. Journal of Petrology, 37: 145-170. doi: 10.1093/petrology/37.1.145 [14] Le Maitre, R W., Bateman, P., Dudek, A., et al., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford. [15] Liegeois, J. P., 1998. Contrasting orgins of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids, the use of sliding normalization. Lithos, 45: 1-28. doi: 10.1016/S0024-4937(98)00023-1 [16] Lin, Q. H., Li, L. Y., Liang, M. G., 1990. The origin of granitoids in Heshui and Sihe, western Guangdong. Regional Geology of China, 9(20): 173-180 (in Chinese with English abstract). [17] Lu, Y. F., 2004. GeoKit-A geochemical toolkit for microsoft excel. Geochimica, 33(5): 459-464 (in Chinese with English abstract). [18] Ludwig, K. R., 1999. Using Isoplot/EX, version 2: A geo-chronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 1-47. [19] Middlemost, E. A. K., 1989. Iron oxidation ratios, norms and the classfication of volcanic rocks. Chem. Geo., 77: 19-26. doi: 10.1016/0009-2541(89)90011-9 [20] Mo, Z. S., Ye, B. D., Pan, W. Z., et al., 1980. The geology of granitoids in Nanling. Geological Publishing House, Beijing-66 (in Chinese). [21] Nedelec, A., Stephens, W. E., Fallicu. A. E., 1995. The Pan-African stratoid granites of Madagascar: Alkaline mag-matism in a post-collisional extensional setting. Journal of Petrology, 36: 1367-1391. doi: 10.1093/petrology/36.5.1367 [22] Patino Douce, A. E., Beard, J. S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 k-bar. J. Petrol., 36: 707-738. [23] Patino Douce, A. E., Johnston, A. D., 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol., 107: 202-218. doi: 10.1007/BF00310707 [24] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25: 956-983. doi: 10.1093/petrology/25.4.956 [25] Peng, S. B., Peng, a M., Shao, J. G., 1995. Petrofabric features as evidence of structural evolution of the Yunkai area. Guangdong Geology, 10(2): 25-33 (in Chinese with English abstract). [26] Peng, S. B., Zhang, Y. M., Zhan, M. G., et al., 2000. Dating of Sm-Nd, Rb-Sr isotopic system and its dynamic significance for the Proterozoic augen granite in Yunkai area. Acta Petrologica Sinica, 16 (1): 99-105 (in Chinese with English abstract). [27] Peng, S. M., Wu, G. Y., Zhou, G. Q., et al., 1995. Tectonic euolution of Yunkai massif and its shearing anatectic origin of gneissic granitic rocks. China University of Geosciences Press, Wuhan, 43-147 (in Chinese with English abstract). [28] Rajesh, H. M., 2000. Characterization and origin of a compo-sitionally zoned aluminous A-type granite from South India. Geol. Mag., 137(3): 291-318. doi: 10.1017/S001675680000399X [29] Rickwood, P. C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5 [30] Shao, J. G., Wu, G. Y., Peng, S. M., et al., 1996. Micro-area 40Ar/39Ar dating of Dongzhen granitic body in Guangdong and its significance. Guangdong Geology, 11(3): 51 - 56 (in Chinese with English abstract). [31] Skjerlie, K. P. Johnston, A. D., 1996. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol., 37: 661-691. doi: 10.1093/petrology/37.3.661 [32] Sylvester, P. J., 1998. Post-collision strongly peraluminous granites. Lithos, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3 [33] Tesfaye, K., Christian, K., 2003. Petrogenessis of A-type granitoids from the Wallagga area, western Ethiopia: Constraints from mineralogy, bullk-rock chemistry, Nd and Sr isotopic compositions. Precambrian Research, 121: 1-24. doi: 10.1016/S0301-9268(02)00198-5 [34] Whalen, T. B., Currie, K. L., Chappelt, R W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol., 95: 407-419. [35] Xiao, Q. H., Deng, J. F., Ma, D. Q., et al., 2002. The ways of investigation of granitoids. Geological Publishing House, Beijing, 12-50 (in Chinese). [36] Ye, B. D. 1989. Isotopic age data from Yunkai area of Guangdong and Guangxi provinces and their geologic implications. Guangdong Geology, 4 (3): 39-56 (in Chinese with English abstract). [37] Yin, H. F., Wu, S. R, Du, Y. S., et al., 1999. South China defined as part of Tethyan archipelagic ocean system. Earth Science-Journal of China University of Geosciences, 24 (1): 1-12 (in Chinese with English abstract). [38] Zhong, Z. Q., Zhang, H. F., Suo, S. T., et al., 1999. Partial melting in exhumation of ultrahigh pressure metamor-phic rocks, Dabieshan mountains, China. Earth Science-Journal of China University of Geosciences, 24 (4): 393-399 (in Chinese with English abstract). [39] Zhou, H. W., You, Z. D., Zhong, Z. Q., et al., 1994. Characteristics of zircons in orbicular gneissic biotite-granite from Yunkai uplifted area. Earth Science-Journal of China University of Geosciences, 19(4): 427-432. [40] 高山, 金振民, 1997. 拆沉作用(delamination)及其壳幔演化动力学意义. 地质科技情报, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.000.htm [41] 金振民, 高山, 1996. 底侵作用(underplating)及其壳幔演化动力学意义, 地质科技情报, 15(2): 1-7. [42] 林庆华, 李立源, 梁明国, 1990. 粤西合水、思贺地区花岗质岩石的成因. 中国区域地质, 9(20): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199002008.htm [43] 路远发, 2004. GeoKit: 一个用VAB构建的地球化学工具软件包. 地球化学, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 [44] 莫柱荪, 叶伯丹, 潘维组, 等, 1980. 南岭花岗岩地质学. 北京: 地质出版社, 44-66. [45] 彭少梅, 伍广宇, 周国强, 等, 1996. 云开地区片麻状花岗岩形成的构造-深熔机理. 武汉: 中国地质大学出版社, 43 -147. [46] 彭松柏, 彭少梅, 邵建国, 1995. 云开地区构造演化的岩石组构特征. 广东地质, 10(2): 25-33. [47] 彭松柏, 张业明, 战明国, 等, 2000. 粤西云开元古宙眼球状花岗岩Sm-Nd、Pb-Pb和Rb-Sr同位素定年及其动力学意义. 岩石学报, 16(1): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001010.htm [48] 邵建国, 伍广宇, 彭少梅, 等, 1996. 广东东镇岩体微区40Ar/39Ar年龄及其意义. 广东地质, 11(3): 51-56. [49] 肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 12-50. [50] 叶伯丹, 1989. 两广云开地区同位素地质年龄数据及其地质意义. 广东地质, 4(3): 39-56. [51] 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学——中国地质大学学报, 24(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm [52] 钟增球, 张宏飞, 索书田, 等, 1999. 大别山高压折返过程中的部分熔融作用. 地球科学——中国地质大学学报, 24 (4): 393-399. [53] 周汉文, 游振东, 钟增球, 等, 1994. 云开隆起区钾长球斑片麻状黑云母花岗岩锆石特征研究. 地球科学——中国地质大学学报, 10(4): 427-432. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199404005.htm