LAM-ICPMS Analysis on Clinopyroxenes of Peridotite Xenoliths from Hannuoba and Its Significance on Lithospheric Mantle Evolution
-
摘要: 橄榄岩成分及其中矿物(如单斜辉石)微量元素组成可以很好地揭示岩石圈地幔性质.在对汉诺坝新生代玄武岩中橄榄岩捕虏体做详细岩相学和岩石化学研究基础上, 重点分析了单斜辉石的激光原位微量元素, 并探讨了新生代华北克拉通北缘岩石圈地幔特征及地幔演化.汉诺坝地区岩石圈地幔是相当于原始地幔经过不同程度的部分熔融抽取形成的, 除个别样品的部分熔融程度为15%-20%外, 多数样品 < 5%.全岩主元素、单斜辉石成分体现出新生代汉诺坝地区的岩石圈地幔是很不均一的: 在主体饱满型中有亏损型地幔的残留.这种共存现象可能是软流圈物质对古老地幔进行侵蚀、混合和改造置换的结果.单斜辉石微量元素组成所体现的碳酸岩岩浆交代作用和硅酸盐熔/流体的交代作用也支持这一认识.Abstract: The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characters of lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba, which is located on the north edge of the intra-North China orogenic belt, are mainly discussed based on the in situ, LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths, combined with detailed petrographic and petrochemical studies. The Hannuoba lithospheric mantle was formed by different partial melting of the primitive mantle Most of the samples reflect a partial melting degree of lower than 5% with a few samples of 15% - 20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle that replaced the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/fluid metasomatism as magnified by the trace element compositions of the clinopyroxenes from the Hannuoba lithospheric mantle.
-
Key words:
- peridotite xenoliths /
- clinopyroxene /
- LAM-ICPMS /
- lithospheric mantle evolution /
- Hannuoba /
- North China cratoa
-
图 1 华北克拉通主要构造单元及样品出露位置(构造单元划分据Zhao et al., 2000略修改)
Fig. 1. Major tectonic units and sample position in North China craton
图 2 橄榄岩中橄榄石的Mg#频数分布
HNB.汉诺坝数据引自Song et al.(1989)、Chen et al.(2001)和Rudnick et al.(2004); HB.鹤壁数据来源于Zheng et al.(2001); SW.山旺数据引自Zheng et al.(1998)和郑建平(1999)
Fig. 2. Frequency distribution of Mg#in olivine of peridotites
图 3 不同地区橄榄岩中单斜辉石及尖晶石Mg#-Cr#关系图
山旺数据引自Zheng et al., 1998; 鹤壁数据引自Zheng et al., 2005; 郑建平, 1999
Fig. 3. Plots of Mg#vs.Cr#of Cpx and Sp in peridotites from different localities
图 5 汉诺坝地幔橄榄岩捕虏体主量元素关系
Fig. 5. Correlation plots of major elements in peridotite xenoliths from Hannuoba
Archon: > 2.5 Ga; Tecton: < 1.0 Ga (Griffin et al., 1999)
表 1 汉诺坝橄榄岩捕虏体组成矿物的Mg#和Cr#值
Table 1. Values of Mg#and Cr#of minerals in peridotites from Hannuoba
表 2 代表性汉诺坝橄榄岩捕虏体中单斜辉石微量元素含量(10-6)
Table 2. Trace element abundance of Cpx in representative peridotite xenoliths from Hannuoba
表 3 汉诺坝地幔橄榄岩主量元素组成
Table 3. Major element compositions of peridotite xenoliths from Hannuoba
-
[1] Bell, K., Kjarsgaard, B. A., Simonetti, A, , 1998. Carbonatites into the twenty-first century. J. Petrol., 39: 1839-1845. doi: 10.1093/petroj/39.11-12.1839 [2] Chen, S. H., O'Reilly, S. Y., Zhou, X. H., et al., 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: Evidence from xenoliths. Lithos, 56: 267-301. doi: 10.1016/S0024-4937(00)00065-7 [3] Gao, S., Rudnick, R L., Carlson, R W., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China cratoa. Earth and Planetary Science Letters, 198: 307-322. [4] Gao, S., Rudnick, R L., Yuan, H. L., et al., 2004. Recycling lower continental crust in the North China cratoa. Nature, 432: 892-897. [5] Griffin, W. L., O'Reilly, S. Y., Ryan, C. G., 1999. The composition and origin of sub-continental lithospheric mantle. In: Fei, Y., Berka, C. M., Mysen, B. O., eds. . Mantle petrology: Field observations and high-pressure experimentation: A tribute to Francis R. (Joe) Boyd. The Geochemical Society, Special Publication, 6: 13-45. [6] Griffin, W. L., Zhang, A., O'Reilly, S. Y., et al., 1998. Phan-erozoic evolution of the lithosphere beneath the Sino-Korean cratoa In: Flower, M., Chung, S. L., Lo, C. H., et al., eds., Mantle dynamics and plate interactions in East Asia. Amer. Geodynamics Series, 27: 107-126. American Geophysical Union, Washington, D. C. . [7] Hauri, E. H., Hart, S. R, 1994. Constraints on the melt migration from mantle plumes: A trace element study of peridotite xenoliths from Savai'i, Western Samoa. J. Geophys. Res., 99: 24301-24322. doi: 10.1029/94JB01553 [8] Hellebrand, E., Snow, J. E., Dick, H. J. B., et al., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410: 677-680. doi: 10.1038/35070546 [9] Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopside in abyssal peridotites. J. Geophys. Res., 95: 2661-2678. doi: 10.1029/JB095iB03p02661 [10] Li, T. F., Ma, H. W., Bai, Z. M., 1999. Geochemical characteristics and genetic model of Hannuoba basalts, Hebei Province. Acta Petrologica et Mineralogica, 18(3): 217 -228 (in Chinese with English abstract). [11] Liu, Y. S., Gao, S., Jin, S Y., 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604. doi: 10.1016/S0016-7037(01)00609-3 [12] Lu, F. X, Zheng, J. P., Li, W. P., et al., 2000. The main evolution pattern of Phanerozoic mantle evolution in the eastern China: The"mushroom cloud"model. Earth Science Frontiers, 7(1): 97-107 (in Chinese with English abstract). [13] Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic lithoprobes and loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Pri-chard, H. M, Alabaster, T., Harris, N. B. W., et al., eds., Magmatic processes and plate tectonics. Geol. Soc. Spec. Pub., 76: 71-81. [14] Norman, M. D., Pearson, N. J., Sharma, A., et al., 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand. Newsl., 20: 247-261. doi: 10.1111/j.1751-908X.1996.tb00186.x [15] Rudnick, R L., Gao, S., Ling, W. L., 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China cratoa Lzttoi, 77: 609-637. [16] Song, Y., Frey, F. A., 1989. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity. Geochim. Cosmochim. Acta, 53: 97-113. doi: 10.1016/0016-7037(89)90276-7 [17] Wu, F. Y., Ge, W. C., Sun, D. Y., et al., 2003. Discussion on the lithospheric thinning in eastern China. Earth Science Frontiers, 10(3): 51-60 (in Chinese with English abstract). [18] Wulff-Pedersen, E., Neumann, E. R., Jensen, R R, 1996. The upper mantle under La Palma, Canary Island: Formation of Si-K-Na-rich melt and its importance as a meta-somatic agent Contrib. Mineral. Petrol., 125: 113-139. doi: 10.1007/s004100050210 [19] Xu, Y. G., 2001. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 747-757. doi: 10.1016/S1464-1895(01)00124-7 [20] Xu, Y. G., 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: Pyroxenite xenoliths from Hannuoba, North China. Chemical Geology, 182: 301-322. doi: 10.1016/S0009-2541(01)00300-X [21] Yuan, X. C., 1996. Velocity structure of the Qinling litho-sphere and mushroom cloud model. Science in China (Series D), 39 (3): 235-244. [22] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Meta-morphism of basement rocks in the central zone of the North China craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res., 103: 55-88. doi: 10.1016/S0301-9268(00)00076-0 [23] Zheng, J. P., 1999. Mesozoic-Cenozoic mantle replacement and lithospheric thinning, East China. China University of Geosciences Press, Wuhan (in Chinese). [24] Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2005. Late Mesozoic-Eocene mantle replacement beneath the eastern North China craton: Evidences from the Paleozoic and Cenozoic peridotite xenoliths. Intern. Geol. Rev., 47: 457-472. doi: 10.2747/0020-6814.47.5.457 [25] Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton. Int. Geol. Rev., 40: 471-499. doi: 10.1080/00206819809465220 [26] Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., et al., 2001. Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution. Lithos, 57: 43-66. doi: 10.1016/S0024-4937(00)00073-6 [27] Zheng, J. P., O'Reilly, a Y., Griffin, W. L., et al., 2004. Nature and evolution of Mesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 74: 41-65. doi: 10.1016/j.lithos.2003.12.008 [28] Zhou, X. H., Sun, M, Zhang, G. H., et al., 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111-124. doi: 10.1016/S0024-4937(02)00110-X [29] 李天福, 马鸿文, 白志民, 1999. 汉诺坝玄武岩的地球化学特征及成因模式. 岩石矿物学杂志, 18(3): 217-228. doi: 10.3969/j.issn.1000-6524.1999.03.003 [30] 路凤香, 郑建平, 李伍平, 等, 2000. 中国东部显生宙地幔演化的主要样式: "蘑菇云"模型. 地学前缘, 7(1): 97-107. doi: 10.3321/j.issn:1005-2321.2000.01.009 [31] 吴福元, 葛文春, 孙德有, 等, 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60. doi: 10.3321/j.issn:1005-2321.2003.03.004 [32] 郑建平, 1999. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社.