Geochemical Characteristics of the Late Paleozoic Diabase Dyke Swarms of Chang maohezi from Western Liaoning, Northeast China
-
摘要: 根据全岩K-Ar年龄(287.5~243.6Ma), 辽西朝阳长茂河子辉绿岩墙群形成于晚古生代.这些辉绿岩分为低铁钛辉绿岩和高铁钛辉绿岩2种, 以低铁钛辉绿岩为主.低铁钛辉绿岩以低TiO2(< 2%)、FeOt(12.39%~15.33%)、V(227~335μg/g)、Sc(24~36μg/g) 含量和高的SiO2 (45.61%~47.72%)、Al2O3(12.51%~16.71%)、MgO(6.66%~9.31%)、K2O(0.57%~2.39%)、Cr(107~177μg/g)和Ni(96~235μg/g) 含量, 以及低Ti/Y(327~496)和Ti/Zr (69~114) 比值为特征, 类似于大陆拉斑玄武质岩石; 高铁钛辉绿岩以高的TiO2 (5%~6%)、FeOt(22.13%~22.16%)、V(850~859μg/g)、Sc(51~52μg/g) 含量和低的SiO2 (42.88%~44.90%)、Al2O3(11.53%~11.57%)、MgO (5.15%~5.29%, Mg#=0.32)、K2O (0.48%~0.51%)、Cr(< 2μg/g)和Ni(< 30μg/g) 含量及高的Ti/Y(1046~1106)、Ti/Zr(250~263) 比值为特征, 类似于Skaergaard侵入体.这些辉绿岩相对富集Rb、Th、U、Pb、Ti和轻稀土元素, 而相对亏损Ba、Sr、P和Nb、Ta.εNd(t) (-6.43~-4.12)、εSr(t) (42.94~64.19) 显示Sr-Nd同位素组成较为均匀, 并反映它们源于富集岩石圈地幔.认为长茂河子辉绿岩形成于富集岩石圈地幔的部分熔融, 经历了岩浆结晶分异与地壳混染作用.高铁钛辉绿岩和低高铁钛辉绿岩形成环境不同, 前者形成于相对低氧逸度或相对封闭的结晶环境中.Abstract: Based on K-Ar isotopic ages (287.5-243.6 Ma), diabase dyke swarms of the Changmaohezi from western Liaoning, Northeast China, formed in the Late Paleozoic. These diabases can be divided into low Ti-Fe diabase and high Ti-Fe diabase. The low Ti-Fe diabases are characterized by low TiO2 (< 2%), FeOt (12.39%-15.33%), V (227-335 μg/g), Sc (24-36 μg/g) and high SiO2 (45.61%-47.72%), Al2O3 (12.51%-16.71%), MgO (6.66%-9.31%), K2O (0.57%-2.39%), Cr (107-177 μg/g), Ni (96-235 μg/g), and low Ti/Y (327-496), Ti/Zr (69-114), which are similar to continental flood basalts. The high Ti-Fe diabases are characterized by high TiO2 (5%-6%), FeOt (22.13%-22.16%), V(850-859 μg/g), Sc (51-52 μg/g), and low SiO2 (42.88%-44.90%), Al2O3 (11.53%-11.57%), MgO (5.15%- 5.29%), K2O (0.48%-0.51%), Cr (< 2 μg/g), Ni (< 30 μg/g), and high Ti/Y (1 046-1 106), Ti/Zr (250-263), which are similar to the Skaergaard intrusion. All these rocks are enriched in Rb, Th, U, Pb, Ti, and light REE, and depleted in Ba, Sr, P, Nb and Ta. They have well-evolved Nd and Sr isotope compositions with εNd(t) =-6.43 to -4.12 and εSr(t) =42.94-64.19. The diabases were probably derived from the enriched lithospheric mantle and underwent fractional crystallization and crust assimilation. The high Ti-Fe diabases and the low Ti-Fe diabases are from different crystal conditions, the former in a closed system or a relatively oxidized state.
-
Key words:
- low Ti-Fe diabase /
- lithosphere mantle /
- Late Paleozoic /
- Changmaohezi /
- western Liaoning Province
-
图 3 稀土元素配分曲线型式和微量元素蛛网图(标准值采用Sun and McDonough, 1989推荐值, 图例同图 2)
Fig. 3. Chondrite-normalized REE distribution patterns and primary mantle-normalized incompatible element patterns
图 4 辉绿岩SiO2与主微量元素相关图(图中符号同图 2)
Fig. 4. SiO2 vs. major and trace element diagrams
图 5 Zr/Y-Zr关系图解(图例同图 2)
Fig. 5. Zr/Y vs. Zr diagram
表 1 辉绿岩K-Ar年龄分析结果
Table 1. K-Ar ages of diabases
表 2 辉绿岩主量和微量元素分析结果
Table 2. Major and trace element analysis of diabases
表 3 辉绿岩Nd、Sr同位素分析结果
Table 3. Nd and Sr isotopic data of diabases
-
[1] Brooks, C.K., Larsen, L.M., Nielsen, T.F.D., 1991. Importance of iron-rich tholeiitic magmas at divergent plate margins: A reappraisal. Geology, 19: 269 - 272. [2] Brooks, C. K., Nielsen, T. F. D., 1978. Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dike rocks. Lithos, 11: 1 - 14. doi: 10.1016/0024-4937(78)90027-0 [3] Brooks, C.K., Nielsen, T.F.D., 1990. A discussion of Hunter and Sparks. Contributions to Mineralogy and Petrology , 95: 451 - 461;104: 244 - 247. [4] Bryndzia, L.T., Wood, B.J., Dick, H.J.B., 1989. The oxidation state of the earthʾs sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites. Nature, 341: 526 - 527. doi: 10.1038/341526a0 [5] Buchanan, P.C., Koeberl, C., Reimold, W. U., 1999. Petrogenesis of the Dullstroom Formation, Bushveld magmatic province, South Africa. Contributions to Mineralogy and Petrology, 137 (1/2): 0133 - 0146. [6] Bureau of Geology and Mineral Resources of Liaoning Province, 1989. Regional geology of Liaoning Province. Geological Publishing House, Beijing, 394 - 520 (in Chinese with English abstract). [7] Christie, D.M., Carmichael, I.S.E., Langmuir, C. H., 1986. Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79: 397 - 411. doi: 10.1016/0012-821X(86)90195-0 [8] Condie, K. C., 1997. Sources of Proterozoic mafic dyke swarms: Constraints from Th/ Ta and La/ Yb ratios. Precambrian Research, 81 (1 - 2): 3 - 14. doi: 10.1016/S0301-9268(96)00020-4 [9] Cox, K.G., 1981. A model for flood basalts volcanism. Journal of Petrology, 21: 629 - 650. [10] Hergt, J. M., Peate, D. W., Hawkesworth, C.J., 1991. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters, 105: 134 - 148. doi: 10.1016/0012-821X(91)90126-3 [11] Hoek, J. D., Seitz, H. M., 1995. Continental mafic dyke swarms as tectonic indicators: An example from the Vestfold Hills, East Antarctica. Precambrian Research, 75: 121 - 139. doi: 10.1016/0301-9268(95)80002-Y [12] Hoffman, P. F., 1991. Did the breakout of Lauentia turn Gondwanaland inside-out? Science, 252: 1406 - 1412. [13] Hunter, R.H., Sparks, R.S.L., 1987. The differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology, 95: 451 - 461. doi: 10.1007/BF00402205 [14] Juster, T., Grove, T. L., 1989. Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos spreading center, 85°W and 95°W. Journal of Geophysical Research, 94 (B7): 9251 - 9274. doi: 10.1029/JB094iB07p09251 [15] Kennedy, A.K., Grove, T.L., Johnson, R. W., 1990. Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contributions to Mineralogy and Petrology, 104: 722 - 734. doi: 10.1007/BF01167289 [16] Li, J. H., He, W. Y., Qian, X.L., 1997. Genetic mechanism and tectonic setting of Proterozoic mafic dyke swarm: Its implication for paleoplate reconstruction. Geological Journal of China Universities, 3 (3): 273 - 281 (in Chinese with English abstract). [17] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and geochemistry of Cretaceousmafic dikes from northern Guangdong, SE China. Geochimica, 26 (2): 14 - 31 (in Chinese with English abstract). [18] Li, X.H., Liu, Y, Tu, X.L., et al., 2002. Precise determination of chemical compositions in silicate rock using ICPAES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31 (3): 289 - 294 (in Chinese with English abstract). [19] Li, Z.X., Li, X. H., Kinny, P.D., et al., 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earthand Planetary Science Letters, 173: 171 - 181. doi: 10.1016/S0012-821X(99)00240-X [20] Liang, X. R., Wei, G.J., Li, X. H., et al., 2003. Precise measurement of 143Nd/144Nd and Sm/ Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica, 32 (1): 91 - 96 (in Chinese with English abstract). [21] Marsh, J. S., Ewart, A., Milner, S. C., et al., 2000. The Etendekaigneous province: Magma types and their stratigraphic distribution with implications for the evolution of the Parana-Etendeka flood basalt province. Bulletin of Volcanology, 62(6/7): 464 - 486. [22] McBirney, A. R., 1989. The Skaergaard layered series: 1. structure and average compositions. Journal of Petrology, 30: 363 - 397. [23] McBirney, A.R., Naslund, H.R., 1990. The differentiation of the Skaergaardintrusion: A discussion of Hunter and Sparks. Contributions to Mineralogy and Petrology, 95: 451 - 461;104: 235 - 240. [24] Pin, C., Marini, F., 1993. Earth Ordovican continental breakup in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodle igneous association of the southern Massif central, France. Lithos, 29: 177 - 196. doi: 10.1016/0024-4937(93)90016-6 [25] Presnall, D.C., 1966. The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Am. J. Sci., 264: 753 - 809. [26] Qian, X. L., Chen, Y. P., 1987. Late Precambrain mafic swarms of the North China craton. In: Halls, H. C., Fahrig, W.F., eds., Mafic dyke swarms. Geological Association of Canada Special Papers, 34: 385 - 391. [27] Radhakrishna, T., Joseph, M., 1996. Proterozoic palaeomagnetism of the mafic dyke swarms in the high-grade region of southern India. Precambrian Research, 76 (1 - 2): 31 - 46. doi: 10.1016/0301-9268(95)00022-4 [28] Radhakrishna, T., Mathew, J., 1996. Late Precambrian (850 - 800 Ma) palaeomagnetic pole for the south Indian shield from the Harohalli alkaline dykes: Geotectonic implications for Gondwana reconstructions. Precambrian Research, 80(1 - 2): 77 - 87. doi: 10.1016/S0301-9268(96)00006-X [29] Rollinson, H., 1999. Petrology and geochemistry of metamorphosed komatiites and basalts from the Sula Mountains greenstone belt, Sierra Leone. Contributions to Mineralogy and Petrology, 134(1): 86 - 100. doi: 10.1007/s004100050470 [30] Shao, J.A., Zhang, L. Q., Wei, C.J., et al., 2001. Composition and features of the Mesozoic bimodal dike swarmin Nankou area, Beijing. Acta Geologica Sinica, 74(2): 205 - 212 (in Chinese with English abstract). [31] Sheraton, J. W., Black, L. P., McCulloch, M. T., et al., 1990. Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills, East Antarctica. Chemical Geology, 85: 215 - 246. doi: 10.1016/0009-2541(90)90002-O [32] Sinton, J. M., Wilson, D.S., Christie, D. M., et al., 1983. Petrologic consequences of rift propagation on oceanic spreading ridges. Earth and Planetary Science Letters, 62: 193 - 207. doi: 10.1016/0012-821X(83)90083-3 [33] Stephen, R., Sparks, J., Huppert, H.E., 1984. Density changes during the fractional crystallization of basaltic magmas: Fluid dynamic implications. Contributions to Mineralogy and Petrology, 85: 300 - 309. doi: 10.1007/BF00378108 [34] Sugawara, T., 2001. Feric iron partitioning bet ween plagioclase and silicate liquid: Thermodynamics and petrological applications. Contributions to Mineralogy and Petrology, 141: 659 - 686. doi: 10.1007/s004100100267 [35] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saundern, A.D., Norry, M.J., eds., Magmatismin the ocean basins. Geological Society Special Publication, 42: 313 - 345. [36] Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti stability, phase relation, and mineral-melt equilibria in ferrobasaltic system. Journal of Petrology, 36: 1137 - 1170. doi: 10.1093/petrology/36.5.1137 [37] Toplis, M.J., Carroll, M. R., 1996. Differentiation of ferrobasaltic magmas under conditions open and closed to oxygen: Implications for the Skaergaard instrusion and other natural systems. Journal of Petrology, 37: 837 - 858. doi: 10.1093/petrology/37.4.837 [38] Wei, G.J., Liang, X. R., Li, X. H., et al., 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS. Geochimica, 31 (3): 295 - 299 (in Chinese with English abstract). [39] Wiebe, R.A., 1997. Fe-rich tholeiitic liquids and their cumulate products in the Pleasant Bay layered intrusion, coastal Maine. Contributions to Mineralogy and Petrology, 129 (4): 255 - 267. doi: 10.1007/s004100050336 [40] Wilson, M., 1989. Igneous petrogenesis. Oxford University Press, London, 325 - 374. [41] Xu, Y.G., Chung, S.L., Jahn, B. M., et al., 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58 (3 - 4): 145 - 168. doi: 10.1016/S0024-4937(01)00055-X [42] Yan, G.H., Mu, B.L., Xu, B.L., et al., 1999. Triassic alkaline intrusives in the Yanliao-Yanshan area: Their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China (Series D), 42 (6): 583 - 587. doi: 10.1007/BF02881575 [43] Zhang, Z. C., Chen, H. X., 1997. Geology and petrology of Shuiquangou complex, northern Hebei Province. Journal of Precious Metallic Geology, 6(2): 81 - 92. [44] Zhou, D. W., Zhang, C. L., Liu, L., et al., 2000. Synthetic study on Proterozoic basic dyke swarms inthe Qinling orogenic belt andits adjacent block as a discussion about some questions related to them. Acta Petrologica Sinica, 16 (1): 22 -28 (in Chinese with English abstract). [45] 李江海, 何文渊, 钱祥麟, 1997. 元古代基性岩墙群的成因机制、构造背景及其古板块再造意义. 高校地质学报, 3 (3): 273 - 281. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX703.003.htm [46] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14 - 31. doi: 10.3321/j.issn:0379-1726.1997.02.004 [47] 李献华, 刘颖, 涂湘林, 等, 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比. 地球化学, 31 (3): 289 - 294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203009.htm [48] 梁细荣, 韦刚健, 李献华, 等, 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/ Nd比值. 地球化学, 32 (1): 91 - 96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200301012.htm [49] 辽宁省地质矿产局, 1989. 辽宁省区域地质志. 北京: 地质出版社, 394 - 520. [50] 邵济安, 张履桥, 魏春景, 等, 2001. 北京南口中生代双峰式岩墙群的组成及其特征. 地质学报, 74(2): 205 - 212. doi: 10.3321/j.issn:0001-5717.2001.02.009 [51] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP) MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31 (3): 295 - 299. doi: 10.3321/j.issn:0379-1726.2002.03.011 [52] 张招崇, 陈洪新, 1997. 冀北水泉沟偏碱性杂岩体的地质———地球化学特征及其构造环境. 中国区域地质, 16 (3): 275 - 282. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD703.008.htm [53] 周鼎武, 张成立, 刘良, 等, 2000. 秦岭造山带及其相邻地块元古代基性岩墙群研究综述及其相关问题探讨. 岩石学报, 16(1): 22 - 28.