Prospect of High Precision Mass Spectrometer in Isotope Geochemistry
-
摘要: 微量地质样品的高精度同位素比值测试已经成为地质和环境科学等领域极其重要的研究手段.新型固体热电离质谱计以其高精度和高灵敏度, 将在同位素年代学和地球化学领域有广阔的应用前景.报道采用IsoProbeT质谱计测量标准物质溶液的结果.测量锶标准物质NBS987和钕标准物质Ames分别获得平均87Sr/86Sr比值0.710 241 8±0.000 005 1和平均143Nd/144Nd比值0.512 148 4±0.000 002 9, 内部精度可达0.000 3%.微量锶标准物质(0.3~1 ng) 的同位素比值测量内部精度可以优于0.003%.结合低本底化学流程, 实现了微量地质样品的高精度同位素比值测试.这一结合将有效地促进单颗粒矿物年代学和同位素示踪在岩浆岩、变质岩、矿床、构造岩研究的应用.Abstract: The high precision measurement of isotopic ratios for micro-geological samples has become very important in the geological and environmental sciences. Recently developed solid-source thermal ionization mass spectrometers are highly precise and sensitive, and are playing a crucial role in isotopic geochronology and geochemistry. This paper reports analytical data obtained from standard material solutions using an IsoProbe-T mass spectrometer. Measurements on the Sr standard material NBS987 and Nd standard material Ames yielded mean 87Sr/86Sr and 143Nd/144Nd ratio values of 0.710 241 8± 0.000 005 1 and 0.512 148 4±0.000 002 9, respectively, with an internal precision better than 0.000 3%. Measurements using a small amount of the Sr standard material solution NBS987 (0.3-1 ng) yielded an internal precision significantly better than 0.003%. Combining chemical separation procedures having low blank, measurements of micro-geological samples have successively been achieved. This combination of low-blank chemical procedures and the use of a high precision mass spectrometer will potently promote applications of single-grain geochronology and isotopic tracer on magmatic rocks, metamorphic rocks, ore deposits and tectonites.
-
Key words:
- mass spectrometer /
- high precision /
- low blank /
- geochronology /
- isotope geochemistry
-
表 1 标准物质溶液NBS987 Sr测量结果
Table 1. Analytical data of the Sr standard material solution NBS987
表 2 标准物质溶液Ames Nd测量结果
Table 2. Analytical data of the Nd standard material solution Ames
-
[1] Chen, F., Hegner, E., Todt, W., 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany—Evidence for a Cambrian magmatic arc. Int. J. Earth Sci. , 88: 791-802. doi: 10.1007/s005310050306 [2] Cherniak, D. J., Watson, E. B., 2000. Pb diffusion in zircon. Chem. Geol. , 172: 5-24. [3] Cocherie, A., Guerrot, C., Rossi, P., 1992. Single-zircon dating by step-wise Pb evaporation: Comparison with other geochronological techniques applied to the Hercynian granites of Corsica, France. Chem. Geol. , 101: 131-141. [4] Gagnevin, D., Daly, J. S., Poli, G., et al., 2005a. Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: Insights into the petrogenesis of a granitic system and disequilibrium crystal growth. J. Petrol. , 46: 1689-1724. doi: 10.1093/petrology/egi031 [5] Gagnevin, D., Daly, J. S., Waight, T. E., et al., 2005b. Pb isotopic zoning of K-feldspar megacrysts determined by laser ablation multi-collecter ICP-MS: Insights into granite petrogenesis. Geochim. Cosmochim. Acta, 69: 1899-1915. doi: 10.1016/j.gca.2004.10.007 [6] Harper, Jr. C. L., Jacobsen, S. B., 1992. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the earth's mantle. Nature, 360: 728-732. doi: 10.1038/360728a0 [7] Jacobsen, S. B., Wasserburg, G. J., 1984. Sm-Nd isotopic evolution of chondrites and achondrites, Ⅱ. Earth Planet. Sci. Lett. , 67: 137-150. doi: 10.1016/0012-821X(84)90109-2 [8] Klötzli, U. S., 1997. Single zircon evaporation thermal ionisation mass spectrometry: Method and procedures. Analyst, 122: 1239-1248. doi: 10.1039/a704114d [9] Kober, B., 1986. Whole-grain evaporation for207Pb/206Pb age—Investigations on single zircons using a doublefilament thermal ion source. Contrib. Mineral. Petrol. , 93: 482-490. doi: 10.1007/BF00371718 [10] Kober, B., 1987. Single zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib. Mineral. Petrol. , 96: 63-71. doi: 10.1007/BF00375526 [11] Krogh, T. E., 1982. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using air abrasion technique. Geochim. Cosmochim. Acta, 46, 637-649. doi: 10.1016/0016-7037(82)90165-X [12] Lee, J. K. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th diffusion in natural zircon. Nature, 390: 159-161. doi: 10.1038/36554 [13] Lesher, C. E., 1994. Kinetics of Sr and Nd exchange in silicate liquids: Theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J. Geophys. Res. , 99: 9585-9604. doi: 10.1029/94JB00469 [14] Li, Q. L., Chen, F. K., Wang, X. L., et al., 2005. Low-blank chemical separation procedure and the single grain mica Rb-Sr isochron dating method. Chinese Sci. Bull. (inpress). [15] Li, S. G., Jagoutz, E., Chen, Y. Z., et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultra-high pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim. Cosmochim. Acta, 64: 1077-1093. doi: 10.1016/S0016-7037(99)00319-1 [16] Ludwig, K. R., 2001. Isoplot/Ex, rev. 2.49: A geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, (1): 58. [17] Mattinson, J. M., 1994. A study of complex discordance in zircons using step-wise dissolution techniques. Contrib. Mineral. Petrol. , 116: 117-129. doi: 10.1007/BF00310694 [18] Mezger, K., Krogstad, E. J., 1997. Interpretation of discordant U-Pb zircon ages: An evaluation. J. Metamorph. Geol. , 15: 127-140. doi: 10.1111/j.1525-1314.1997.00008.x [19] Müller, W., Mancktelow, N. S., Meier, M., 2000. Rb-Sr microchrons of synkinematic mica in mylonites: An example from the DAV fault of the Eastern Alps. Earth Planet. Sci. Lett. , 180: 385-397. doi: 10.1016/S0012-821X(00)00167-9 [20] Müller, W., 2003. Strengthening the link between geochronology, textures and petrology. Earth Planet. Sci. Lett. , 206: 237-251. doi: 10.1016/S0012-821X(02)01007-5 [21] Poller, U., Liebetrau, V., Todt, W., 1997. U-Pb singlezircon dating under cathodoluminescence control (CLC-method): Application to polymetamorphic orthogneisses. Chem. Geol. , 139: 287-297. doi: 10.1016/S0009-2541(97)00040-5 [22] Sergeev, S. A., Komarov, A. N., Bickel, R. A., et al., 1997. A new microtome for cutting hard submillimeter-sized crystalline objects for promoting high-resolution instrumental microanalysis. Eur. J. Mineral. , 9: 449-456. doi: 10.1127/ejm/9/2/0449 [23] Sharma, M., Papanastassiou, D. A., Wasserburg, G. J., et al., 1996. The issue of the terrestrial record of 146Sm. Geochim. Cosmochim. Acta, 60: 2037-2047. doi: 10.1016/0016-7037(96)00082-8 [24] Waight, T. E., Maas, R., Nicholls, I. A., 2000. Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: Implications for crystal transfer and magma mingling in S-type granites. Contrib. Mineral. Petrol. , 139: 227-239. doi: 10.1007/s004100000128 [25] Wieser, M. E., Schwieters, J. B., 2005. The development of multiple collector mass spectrometry for isotope ratio measurement. Int. J. Mass Spectrometry, 242: 97-115. doi: 10.1016/j.ijms.2004.11.029