Characteristics of Underpressured Gas Pool in Upper Paleozoic Shiqianfeng Formation of Eastern Ordos Basin
-
摘要: 鄂尔多斯盆地的气源主要来自于山西组-太原组的海陆交互相煤系地层, 上石盒子组沉积了一套巨厚的泥岩, 具有很强的封盖能力, 天然气很难穿层运移.近年来, 相继在盆地东部的石千峰组地层中发现了一系列次生气藏, 其形成机理逐步引起了勘探家的关注.根据次生气藏的特点, 结合包裹体测试计算, 认为其形成原因主要是由于下部超压地层进行超压释放, 从而在区域性盖层内部形成一系列泄压通道, 原生气藏泄漏而形成的.形成过程主要经历了下部高温高压原生气藏的形成、原生气藏泄压与次生气藏的形成、次生气藏的长时间调整3个阶段.Abstract: The gas source in Ordos basin mainly comes from the alternate marine-continental coal-bearing measures of Shanxi and Taiyuan formations. The Upper Shihezi Formation with a vast thick mudstone layer can be taken as a very good seal, so it is difficult for natural gas to pass through. Recently, some secondary gas pools have been found in Shiqianfeng Formation lying above the Upper Shihezi Formation in eastern Ordos basin. In this paper, according to the properties of secondary gas pools and the inclusion data, the secondary gas pools are thought to be formed due to the leakage of the original gas pools penetrating through the regional caprock when the overpressures within lower overpressured strata release. The forming process of gas reservoirs includes three stages, that is, the formation of the primary gas pools with high temperature and high pressure, the leakage of the primary gas pools and the formation of the secondary gas pools, and late adjustment and maintenance of the secondary pools.
-
表 1 鄂尔多斯盆地东部上古生界压力统计
Table 1. Strata pressure of Upper Paleozoic in eastern Ordos basin
表 2 鄂尔多斯盆地东部天然气组分分析
Table 2. Analysis of gas component in eastern Ordos basin
表 3 鄂尔多斯盆地东部地区包裹体形成温度压力
Table 3. Temperature and pressure of inclusion forming in eastern Ordos basin
-
[1] Chapman, R.E., 1980. Mechanical versus thermal cause of abnormal high pore pressure in shales: Reply. AAPG Bulletin, 64(2): 2179-2183. [2] Daines, S.R., 1982. Aqua thermal pressuring and geopressure evaluation. AAPG Bulletin, 66: 931-939. [3] Fu, J.H., Duan, X.W., Xi, S.L., 2000. Characteristics of Upper Paleozoic gas reservoirs in Ordos basin. Natural Gas Industry, 20(6): 16-20(in Chinese with English abstract). [4] Grauls, D.J., Baleix, J.M., 1994. Role of overpressures and insitu stresses in fault-controlled hydrocarbon migration— A case study. Marine and Petroleum Geology, (11): 734-742. doi: 10.1016/0264-8172(94)90026-4 [5] Hunt, J.M., 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74(1): 1-12. [6] Liu, X.F., 2002. Overpressure transfer: Concept and mode. Experimental Petroleum Geology, 24(6): 533-536(in Chinese with English abstract). [7] Liu, X.F., Xie, X.N., 2001. Overpressure relief and itsimplication to hydrocarbon migration and accumulation. Geological Science and Technology Information, 20(4): 51-56. [8] Lü, Y.F., Fu, G., Gao, D.L., 1996. Sealing-cap research of reservoir. Petroleum Industry Press, Beijing, 60-65(in Chinese). [9] Lü, Y.F., Fu, G., Zhang, F.Q., et al., 2000. Quantitative study on sealing ability of overpressure caprock. Acta Sedimentological Sinica, 18(3): 465-469(in Chinese). [10] Ma, Q.F., Chen, S.Z., Zhang, Q.M., et al., 2001. Overpressure basin and oil-gas distribution. Geological Publishing House, Beijing, 1-253(in Chinese). [11] Magara, K., 1978. Compaction and fluid migration: Practical petroleum geology. Elsevier Scientific Publishing company, Amsterdam, Oxford, New York, 1-313. [12] Min, Q., Fu, J.H., Xi, S.L., et al., 2000. Characteristics of natural gas migration and accumulation in the Upper Paleozoic of Ordos basin. Petroleum Exploration and Development, 27(4): 26-30(in Chinese with English abstract). [13] Osborne, M.J., Swarbrick, R.E., 1997. Mechanisms for generation overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81(6): 1023-1041. [14] Sahay, B., Fertl, W.H., 1988. Origin and evaluation of formation pressures. Kluwer Academic Publishers, London, 1-242. [15] Swarbrick, R.E., Osborne, M.J., 1998. Mechanisms that generate abnormal pressures: An overview. AAPG, Memoir, 70: 13-43. [16] Zhao, L., Xia, X.Y., Dai, J.X., 2000. Major Factors controlling the enrichment of the Upper Paleozoic natural gas in the Ordos basin. Experimental Petroleum Geology, 22 (2): 136-140(in Chinese with English abstract). [17] 付金华, 段晓文, 席胜利, 2000. 鄂尔多斯盆地上古生界气藏特征. 天然气工业, 20(6): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200006005.htm [18] 刘晓峰, 2002. 超压传递: 概念和方式. 石油实验地质, 24(6): 533-536. doi: 10.3969/j.issn.1001-6112.2002.06.010 [19] 刘晓峰, 解习农, 2001. 超压释放及其对油气运移和聚集的意义. 地质科技情报, 20(4): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200104014.htm [20] 吕延防, 付广, 高大岭, 1996. 油气藏封盖研究. 北京: 石油工业出版社, 60-65. [21] 吕延防, 付广, 张发强, 等, 2000. 超压盖层封烃能力的定量研究. 沉积学报, 18(3): 465-469. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003023.htm [22] 马启富, 陈斯忠, 张启明, 等, 2001. 超压盆地与油气分布. 北京: 地质出版社, 1-253. [23] 闵琪, 付金华, 席胜利, 等, 2000. 鄂尔多斯盆地上古生界天然气运移聚集特征. 石油勘探与开发, 27(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200004007.htm [24] 赵林, 夏新宇, 戴金星, 2000. 鄂尔多斯盆地上古生界天然气富集的主要控制因素. 石油实验地质, 22(2): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200002007.htm