Fluid Flow and Hydrocarbon Migration Pathways in Abnormally Pressured Environments
-
摘要: 沉积盆地的油气生成、运移和成藏过程与盆地流体作用密切相关, 而异常压力环境下流体活动有其特殊性, 因而与之相关的油气运移和成藏也有其特殊性.对于异常压力体系(包括高压和低压)而言, 存在2类流体系统, 即半开放型和封闭型流体系统.前者由于封闭层的间歇开启导致流体幕式释放, 后者以封闭层内热对流作用为主.按照封闭层开启的成因机制可划分为3类, 即水力破裂或流体压裂型、断裂型、断-压双控型.封闭层的间歇开启构成异常压力环境下油气运移的主通道.这些流体活动和油气运移在海底以及盆地的浅层和深层显示不同地球物理特征, 如气苗、麻坑、气烟囱和流体底辟带等.同样, 还可以利用岩石中残留的一些标记或异常现象示踪盆地流体活动, 如流体包裹体、地层水化学、有机地球化学异常、成岩作用异常、流体场动态模拟等.这些特征和标志为流体和油气运移主通道的识别, 同时也为异常压力环境下油气勘探提供重要的依据.Abstract: Hydrocarbon generation, migration and accumulation are closely related to activity of the basin fluid. Fluid flow in abnormally pressured environments shows different hydrodynamic processes as a result of associated distinct models of hydrocarbon accumulation. Two kinds of fluid flow systems have been classified in abnormally pressured environments including overpressure and underpressure, i.e. semi-opened and closed systems. In the former, opening of seal beds result in episodic fluid expulsion; but in the latter, thermal convection is dominant in anomalous pressured system. The opening mechanisms of seal beds can be grouped into three kinds of patterns, hydrofracturing, faulting and combination action of both faulting and pressuring. Opening of seal beds constitutes main pathways of hydrocarbon from abnormally pressured system. These fluids flowing from deep overpressured strata to seafloor have been identified using different geophysical data, which are imaged as gas blow-out, pockmark, chimney, fluid diapir, and so on. Some resided remarks or anomalous phenomena recorded in depositional rocks can be used to identify the active processes of fluid, such as fluid inclusions, geochemical features of formation water, anomaly in organic matters and diagenetic processes. At the same time, quantitative modeling can be used to present the dynamic processes of fluid flow. These results can constrain the realm of main migration pathways of fluid flow and hydrocarbon, and provide the useful information for hydrocarbon exploration in abnormally pressured environments.
-
Key words:
- abnormal pressure /
- episodic fluid flow /
- thermal convection /
- gas chimney /
- hydrocarbon migration
-
图 4 莺歌海盆地和松辽盆地十屋断陷地层水中Na亏损与Ca盈余之间关系, 左上插图说明不同离子浓度变化与水-岩反应类型关系(Davisson and Criss, 1996)
Fig. 4. Excess-deficit relations of formation water in the Yinggehai basin and the Shiwu depression of Songliao basin. Inset figure shows the relationship between fluid composition and modes of different water-rock interactions
-
[1] Anderson, R.N., 1993. Recovering dynamic gulf of Mexico reserves and the US energy future. Oil Gas Journal, 11: 85-91. [2] Belitz, K., Bredehoeft, J.D., 1988. Hydrodynamics of Denver basin: Explanation of subnormal fluid pressure. AAPG Bulletin, 72: 1334-1359. [3] Bradley, J.S., 1975. Abnormal formation pressure. AAPG Bulletin, 59: 957-973. [4] Bredehoeft, J.D., Wesley, B., Fouch, T.D., 1994. Simulations of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta basin, Utah. AAPG Bulletin, 78(11): 1729-1747. [5] Davisson, M.L., Criss, R.E., 1996. Na-Ca-Cl relations in basinal fluids. Geochimica et Cosmochimica Acta, 60(15): 2743-2752. doi: 10.1016/0016-7037(96)00143-3 [6] Dickinson, G., 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. AAPG Bulletin, 37: 410-432. [7] Fertl, W.H., Chapman, R.E., Hotz, R.F., 1994. Studies in abnormal pressures. Developments in Petroleum Science, 38: 454. [8] Garven, G., 1995. Continental-scale groundwater-flow and geological processes. Annual Review of Earth and Planetary Sciences, 23: 89-117. doi: 10.1146/annurev.ea.23.050195.000513 [9] Gong, Z.S., Li, S.T., Yang, J.M., et al., 2004. Dynamics of hydrocarbon accumulation in northern South China Sea basins. Science Press, Beijing(in Chinese). [10] Gong, Z.S., Li, S.T., Xie, T.J., 1997. Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea. Science Press, Beijing, 193-256(in Chinese). [11] Gouze, P., Coudrain-Ribstein, A., 2002. Chemical reaction and porosity changes during sedimentary diagenesis. Applied Geochemistry, 17: 39-47. doi: 10.1016/S0883-2927(01)00083-X [12] Hao, F., Li, S.T., Gong, Z.S., et al., 2000. Thermal regime, interreservoir compositional heterogeneities, and reservoirfilling history of the Dongfang gas field, Yinggehai basin, South China Sea: Evidence for episodic fluid injections in overpressured basins? AAPG Bulletin, 84(5): 607-626. [13] Hao, F., Cai, D.S., Zou, H.Y., et al., 2004. Overpressure-tectonic activity controlled fluid flow and rapid petroleum accumulation in bozhong depression, bohai bay basin. Earth Science— Journal of China University of Geosciences, 29(5): 518-524(in Chinese with English abstract). [14] He, S., Middleton, M., Tang, Z.H., 2000. Characteristics and origin of underpressure system in the Shiwu fault depression, south-east Songliao basin, China. Basin Research, 12: 147-158. doi: 10.1046/j.1365-2117.2000.00118.x [15] Hindle, A.D., 1997. Petroleum migration pathways and charge concentration: A three-dimensional model. AAPG Bulletin, 81(9): 1451-1481. [16] Hovland, M., Gardner, J.V., Judd, A.G., 2002. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2: 127-136. doi: 10.1046/j.1468-8123.2002.00028.x [17] Hunt, J.M., 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74: 1-12. [18] Hunt, J.M., 1996. Petroleum geology and geochemistry. Freeman and Company, San Francisco, 743. [19] Jiao, J.J., Zheng, C., 1998. Abnormal fluid pressures caused by erosion and subsidence of sedimentary basins. Journal of Hydrology, 204: 124-137. doi: 10.1016/S0022-1694(97)00115-7 [20] Kupecz, J., Gluyas, J., Bloch, S., 1997. Reservoir quality prediction in sandstones and carbonates. American Association of Petroleum Geologists Memoir, 69: 1-307. [21] Land, L.S., 1995. Na-Ca-Cl saline formation waters, Frio Formation(Oligocene), South Texas, USA: Products of diagenesis. Geochimica et Cosmochimica Acta, 59(11): 2163-2174. doi: 10.1016/0016-7037(95)00098-K [22] Law, B.E., Ulmishek, G.F., Slavin, V.I., 1998. Abnormal pressures in hydrocarbon environments. AAPG Memoir, 70: 1-11. [23] Neuzil, C.E., 1995. Abnormal pressures as hydrodynamic phenomena. American Journal of Science, 295: 742-786. doi: 10.2475/ajs.295.6.742 [24] Ortoleva, P.J., 1994. Basin compartments and seals. AAPG Memoir, 61: 477. [25] Parnell, J., 1994. Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Special Publication No. 78, Geological Society, London. [26] Parnell, J., 2002. Fluid seeps at continental margins: Towards an integrated plumbing System. Geofluids, 2(2): 57-61. doi: 10.1046/j.1468-8123.2002.00035.x [27] Roberts, S.J., Nunn, J.A., 1996. Expulsion of abnormally pressured fluids along faults. Journal of Geophysical Research, 101(B12): 28231-28252. doi: 10.1029/96JB02653 [28] Sharp, J.M., Fenstemaker, T.R., Simmons, C.T., et al., 2001. Potential salinity-driven free convection in a shalerich sedimentary basin: Example from the Gulf of Mexico basin in south Texas. AAPG Bulletin, 85(12): 2089-2110. [29] Shi, J.X., 1987. Organic inclusion and its relationship with hydrocarbon. Science in China(Series B), (3): 318-325(in Chinese). [30] Surdam, R.C., 1997. Seals, traps, and the petroleum system. AAPG Memoir, 67: 317. [31] Varsanyi, I., Kovacs, L. O., 1997. Chemical evolution of groundwater in the River Danube deposits in the southern part of the Pannonian basin(Hungary). Applied Geochemistry, 12: 625-636. doi: 10.1016/S0883-2927(97)00018-8 [32] Wilkinson, M., Darby, D., Haszeldine, R.S., et al., 1997. Secondary porosity generation during deep burial associated with overpressure leak-off: Fulmar Formation, United Kingdom Central Graben. AAPG Bulletin, 81(5): 803-813. [33] Xie, X.N., Jiao, J.J., Tang, Z.H., et al., 2003. Evolution of abnormally low pressure and its implications for the hydrocarbon system in the southeast uplift zone of Song liao basin, China. AAPG Bulletin, 87(1): 99-119. [34] Xie, X.N., Li, S.T., Dong, W.L., et al., 1999a. Overpressure development and hydrofracture in the Yinggehai basin, South China Sea. Journal of Petroleum Geology, 22(4): 437-454. doi: 10.1111/j.1747-5457.1999.tb00478.x [35] Xie, X.N., Li, S.T., Dong, W.L., et al., 1999b. Trace marker of hot fluid flow and their geological implications— A case study of Yinggehai basin. Earth Science— Journal of China University of Geosciences, 24(2): 183-188(in Chinese with English abstract). [36] Xie, X.N., Li, S.T., Dong, W.L., et al., 2001. Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai basin, South China Sea. Marine and Petroleum Geology, 18(6): 715-728. doi: 10.1016/S0264-8172(01)00024-1 [37] Xie, X.N., Li, S.T., He, H., et al., 2003. Seismic evidence for fluid migration pathways from an overpressured systems in the South China Sea. Geofluids, 3(4): 245-253. doi: 10.1046/j.1468-8123.2003.00070.x [38] Xie, X.N., Wang, C.Y., Li, S.T., 1998. Hydrofracturing and episodic compaction in low permeable muddy rocks of sedimentary basin. Chinese Science Bulletin, 43(8): 666-670. doi: 10.1007/BF02883572 [39] Zhang, Q.M., Liu, F.N., Yang, J.H., 1996. Overpressure system and hydrocarbon accumulation in the Yinggehai basin. China Offshore Oil and Gas(Geology), 10(2): 65-75 (in Chinese with English abstract). [40] 龚再生, 李思田, 杨甲明, 等, 2004. 南海北部大陆边缘盆地成藏动力学研究. 北京: 科学出版社. [41] 龚再生, 李思田, 谢泰俊, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社, 193-256. [42] 郝芳, 蔡东升, 邹华耀, 等, 2004. 渤中坳陷超压-构造活动联控型流体流动与油气快速成藏. 地球科学——中国地质大学学报, 29(5): 518-524. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405002.htm [43] 施继锡, 1987. 有机包裹体及其与油气的关系. 中国科学(B辑), (3): 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198703012.htm [44] 解习农, 李思田, 董伟良, 等, 1999b. 热流体示踪标志及其地质意义-以莺歌海盆地为例. 地球科学——中国地质大学学报, 24(2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.016.htm [45] 张启明, 刘福宁, 杨计海, 1996. 莺歌海盆地超压体系与油气聚集. 中国海上油气, 10(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199602000.htm