• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩浆成矿体系的热演化和剥露史的数字模拟

    傅清平 McInnesBrent I.A. DaviesPeter J.

    傅清平, McInnesBrent I.A., DaviesPeter J., 2004. 岩浆成矿体系的热演化和剥露史的数字模拟. 地球科学, 29(5): 555-562.
    引用本文: 傅清平, McInnesBrent I.A., DaviesPeter J., 2004. 岩浆成矿体系的热演化和剥露史的数字模拟. 地球科学, 29(5): 555-562.
    FU Qing-ping, McInnes Brent I.A., Davies Peter J., 2004. Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits. Earth Science, 29(5): 555-562.
    Citation: FU Qing-ping, McInnes Brent I.A., Davies Peter J., 2004. Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits. Earth Science, 29(5): 555-562.

    岩浆成矿体系的热演化和剥露史的数字模拟

    基金项目: 悉尼大学科学与工程学院和澳大利亚CSIRO共同资助
    详细信息
      作者简介:

      傅清平(1965-),男,现在悉尼大学攻读博士学位,主要研究方向为温龄学应用与计算机模拟. E-mail:qifu6346@mail.usyd.edu.au

    • 中图分类号: P617.9; P597

    Numerical Modelling of Thermal and Exhumation Histories of Magmatic Ore Deposits

    • 摘要: 通过对岩浆冷却过程的数字模拟研究, 揭示出岩浆在冷却成矿过程中的温度分布和变化规律及影响因素.在此基础上, 进一步应用高精度的温龄计组合来限定岩浆成矿体系的热演化和剥露历史, 精确地计算出岩浆的初始侵位时间和深度、矿物结晶时间、冷却速率、冷却和暴露地表时间, 以及剥露和剥蚀速率等重要参数, 并将模拟结果应用于斑岩铜矿床的成矿研究中.研究表明, 将精确的年龄测试手段与计算机模拟技术相结合, 可为定量研究岩浆矿床的热演化和剥露史、深入了解矿床的成因机制提供一种有效方法.

       

    • 图  1  圆柱状岩浆体在传导冷却过程中的垂向温度分布及随时间的变化

      Fig.  1.  Vertical variations of isotherms with time during the conductive cooling of the cylindrical igneous body

      图  2  岩浆体核部的温度随时间的变化关系

      Fig.  2.  Changes in temperatures with time at the core of the cylindrical igneous body

      图  3  剥蚀速率计算方法

      Fig.  3.  Algorithm for calculating the exhumation and erosion rates of an intrusive igneous body

      图  4  模拟计算方案及温度-年龄模拟曲线

      Fig.  4.  Modelling strategy and resultant temperature-age curve with important ages indicated

      图  5  SC斑岩的温度-年龄模拟曲线

      Fig.  5.  Modelled temperature-age curve of Sar Cheshmeh porphyry

      图  6  300~500 ℃温度区和推导出的SC铜壳体的分布

      Fig.  6.  The distributions of the isotherm zones between 300 ℃ and 500 ℃ and the copper shell deduced from the modelling of the cooling of SC porphyry stock

      表  1  主要参数及其初始值

      Table  1.   Main parameters and their initial values used in the modelling

      表  2  SC斑岩的放射性年龄数据

      Table  2.   Sar Cheshmeh porphyry radiometric age data

    • [1] Carslaw, H.S., Jaeger, J.C., 1959. Conduction of heat in solids. 2nd ed. Oxford Science Publications, New York.
      [2] Crank, J., Nicolson, P., 1947. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambridge Philos. Soc. , 43: 50-67. doi: 10.1017/S0305004100023197
      [3] Delaney, P.T., 1988. Fortran 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization. Computers & Geosciences, 12(2): 181-212.
      [4] Ehlers, T.A., Farley, K.A., 2003. Apatite(U-Th)/He thermochronology: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206: 1-14. doi: 10.1016/S0012-821X(02)01069-5
      [5] Farley, K.A., House, M.A., Kohn, B.P., 1998. Laboratory and natural diffusivity calibrations for apatite(U-Th)/He thermochronology. Mineralogical Magazine, 62A: 436-437. doi: 10.1180/minmag.1998.62A.1.231
      [6] Farley, K.A., 2002. (U-Th)/He dating: Techniques, calibration, and applications. In: Porcelli, D., Ballentine, C.J., Wieler, R., eds., Noble gases in geochemistry. Reviews in Mineralogy and Geochemistry, 47: 819-843.
      [7] Gleadow, A.J.W., Duddy, I.R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5: 169-174. doi: 10.1016/0191-278X(81)90039-1
      [8] Hardee, H.C., 1982. Permeable convection above magma bodies. Tectonophysics, 84: 179-195. doi: 10.1016/0040-1951(82)90159-7
      [9] House, M.A., Wernicke, B.P., Farley, K.A., et al., 1997. Cenozoic thermal evolution of the central Sierra Nevada, California, from(U-Th)/He thermochronometry. Earth & Planetary Science Letters, 151: 167-179.
      [10] Jaeger, J.C., 1968. Cooling and solidification of igneous rocks. In: Hess, H.H., Poldervaart, A., eds., Basalts 2. Interscience Publishers, New York, 503-536.
      [11] Jaeger, J.C., 1959. Temperatures outside of a cooling intrusive sheet. American Journal of Science, 257: 44-54. doi: 10.2475/ajs.257.1.44
      [12] Lippolt, H. J., Leitz, M., Wernicke, R. S., et al., 1994. (U-Th)/He dating of apatite experience with samples from different geochemical environments. Chemical Geology, 112(1-2): 179-191. doi: 10.1016/0009-2541(94)90113-9
      [13] Lovering, T.S., 1955. Temperatures in and near intrusions. Economic Geology, 50: 249-281. doi: 10.2113/gsecongeo.50.3.249
      [14] McInnes, B.I.A., Farley, K.A., Sillitoe, R.H., et al., 1999. Application of(U-Th)/He dating to the estimation of the sense and amount of vertical fault displacement at the Chuquicamata Mine, Chile. Economic Geology, 94: 937-948. doi: 10.2113/gsecongeo.94.6.937
      [15] Philpotts, A.R., 1990. Principles of igneous and metamorphic petrology. Prentice Hall, Englewood Cliffs.
      [16] Reilly, W.I., 1958. Temperature distribution about a cooling volcanic intrusion. New Zealand Journal of Geology and Geophysics, 1: 364-374. doi: 10.1080/00288306.1958.10423188
      [17] Reiners, P.W., Farley, K.A., Hickes, H.J., 2002. He diffusion and(U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349: 297-308. doi: 10.1016/S0040-1951(02)00058-6
      [18] Sengor, A.M.C., Kidd, W.S.F., 1979. Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55: 361-376. doi: 10.1016/0040-1951(79)90184-7
      [19] Sillitoe, R.H., 1973. The top and bottoms of porphyry copper deposits. Economic Geology, 68: 799-815. doi: 10.2113/gsecongeo.68.6.799
      [20] Spera, F.J., 1982. Thermal evolution of plutons: A parameterized approach. Science, 207: 299-301.
      [21] Stein, H.J., Cathles, L.M., 1997. The timing and duration of hydrothermal events. Economic Geology, 92(7/8): 763-765.
      [22] Turcotte, D. L., Schubert, G., 2002. Geodynamics. 2nd ed. Cambridge University Press, Cambridge.
      [23] Webber, K.L., Falster, A.U., Simmons, W.B., et al., 1997. The role of diffusion-controlled oscillatory nucleation of line rock in pegmatite-aplite dikes. Journal of Petrology, 38: 1777-1791. doi: 10.1093/petroj/38.12.1777
      [24] Wolf, R.A., Farley, K.A., Silver, L.T., 1996. Helium diffusion and low temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5
      [25] Yoder, H.S., Tilley, C.E., 1962. Origin of basalt magmas: An experimental study of natural and synthetic rock systems. Journal of Petrology, 3: 342-532. doi: 10.1093/petrology/3.3.342
      [26] Zeitler, P.K., Herczeg, A.L., McDougall, I., et al., 1987. U-Th-He dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta, 51: 2865-2868. doi: 10.1016/0016-7037(87)90164-5
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3281
    • HTML全文浏览量:  80
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2004-06-15
    • 刊出日期:  2004-09-25

    目录

      /

      返回文章
      返回