Inherited Technique of Data Model in Different Stages in Digital Mapping
-
摘要: 以当前第三代地理数据库模型和PRB数据模型为基础, 通过PRB数据流“栈”与不同阶段数据模型的关系说明PRB数据流“栈”是不同阶段数据模型继承和传递的基础; 阐明了最终解释成果空间数据库的数据模型是在不同阶段结构化与非结构化数据模型关系上通过抽象与综合来实现“继承”的; 用对象类和要素类的互操作来实现空间与非空间的属性继承传递.同时, 基于地质图一体化的描述、组织和存储的数据建模原则, 得出了基于PRB数据模型为基础的PRB地质图空间数据库由17个基本要素类、6个对象类、8个综合要素数据集构成.并对实体名称、要素与对象编码、空间数据类型、实体间的关系、主关键字名称、子关键字名称、注释要素类编码、实体属性内容说明进行了定义和说明Abstract: Based on the third generation geography database model and the point-routing-boundary (PRB) data model, this paper explains that the PRB data stream stack is the inherited and transferred foundation of data models in different digital mapping stages. This is done by using the relationship between the PRB data stream stack and different-stage data model. It shows that the date model of the database, which includes the final-interpretable results, can inherit from the integration of the different-stage structure and non-structure data model, and clarifies that the inherited and transferred technique of spatial and no spatial attributes have been implemented by using inter-operation between object class and feature class. At the same time, in terms of the data molding principle of the integrative describing geological map, organizing data and storing data, it is concluded that the PRB data model of the PRB geological map spatial database is composed of seventeen basic feature classes, six object classes and eight synthetic feature classes. This paper also defines and discusses some elements of the PRB data model, including entity names, feature and object class coding, spatial data types, entity relationships, primary and subordinate key names, coding of feature classes notation, and entity attributes.
-
Key words:
- digital mapping /
- database model /
- geological map spatial database
-
表 1 数字地质图空间数据库要素、对象和外挂表描述
Table 1. Feature, object and external table description of spatial database of digital map
-
[1] Bedford, D.R., Ludington, S., Nutt, C., et al., 2002. Geologic database for digital geology of California, Nevada, and Utah—An application of the North American data model. U.S. Geological Survey Open-File Report. [2] Eric, B., Boyan, B., Jordan, H., et al., 2002. Progress report: North American geologic map data model design team, 2002, Digital Mapping Techniques. [3] Li, C.L., Yu, Q.W., Yang, D.L., et al., 2003. Research on PRB digital mapping techniques. Earth Science—Journal of China University of Geosciences, 28(4): 377-383(in Chinese with English abstract). [4] Li, C.L., Zhang, K.X., Qiang, F.Z., et al., 2002. Research on digital regional geological survey system techniques. Advance in Earth Sciences, 17(5): 763-767(in Chinese with English abstract). [5] Michael, Z., 1999. Modeling our world, the ESRI guide to geodatabase design. Environmental Systems Research Institute, Inc. [6] Nick, G., 2004. Digital field survey technology, the future of BGS mapping. Earthwise-British Geological Survey, 20: 4-5. [7] Simon, C., Paul, D., Ron, L., et al., 2004. Geographic information-geography markup language(GML), Reference number of working document: ISO/TC 211/N 1576, Reference number of document: ISO/CD 19136, Committee identification: ISO/TC 211/WG 4, ISO 2004. [8] Weisenfluh, G.A., 2001. Map unit descriptions and the North American data model. In: Soller, D.R., ed., Digital mapping techniques 2001 workshop proceedings: U.S. geological survey open-file report 01-223, 79-86. [9] Yu, Q.W., Li, C.L., Zhang, K.X., et al., 2003. Research actuality and development trend of digital geological mapping. Earth Science—Journal of China University of Geosciences, 28(4): 370-376(in Chinese with English abstract). [10] 李超岭, 于庆文, 杨东来, 等, 2003. PRB数字地质填图技术研究. 地球科学———中国地质大学学报, 28(4): 377384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304002.htm [11] 李超岭, 张克信, 墙芳躅, 等, 2002. 数字区域地质调查系统技术研究. 地球科学进展, 17(5): 763-767. doi: 10.3321/j.issn:1001-8166.2002.05.020 [12] 于庆文, 李超岭, 张克信, 等, 2003. 数字地质填图研究现状与发展趋势. 地球科学———中国地质大学学报, 28(4): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304001.htm