Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains
-
摘要: 在昆仑与秦岭造山带东、西接合部位, 通过详细填图与解剖发现海西期在苦海—赛什塘一带, 存在一条NEE向与东昆仑布青山—阿尼玛卿洋相连通的分支小洋盆, 称为苦海—赛什塘分支洋.晚泥盆世—石炭纪是苦海—赛什塘分支洋扩张时期, 出现大量似洋壳物质, 雪穷、错扎玛洋脊型蛇绿岩是该时期的物质表现, 蛇绿岩组合中的40Ar/ 39Ar年龄(368.6± 1.4) Ma, 与布青山-阿尼玛卿洋扩张洋盆形成时期相吻合.扩张形成的苦海—赛什塘分支洋蛇绿岩组合显示属于发育不成熟的有限小洋盆.扩张作用表现之一是大量记录在裂解块体岩片和结晶基底中的构造热事件, 如龙通斜长角闪岩、角闪石低温坪年龄(358.9± 3.2)Ma(40Ar/ 39Ar)、羊曲云母石英构造片岩黑云母坪年龄(387.3± 2.3)Ma(40Ar/ 39Ar)、苦海黑云斜长片麻岩等时线年龄(336± 2.2)Ma(Rb- Sr)、扎那合惹斜长角闪岩角闪石低温坪年龄(376.9± 0.9)Ma(40Ar/ 39Ar)等反映了裂解时限; 其次是侵入裂解块体岩片中的拉龙洼辉绿岩墙群辉石39Ar/ 40Ar坪年龄为398.4 Ma, 反映初始扩张始于泥盆纪.早-中二叠世分支洋发展进入俯冲消减阶段, 早期沿柴达木微陆块东南缘形成了早二叠世岛弧火山岩(264 Ma)和纳木龙俯冲型花岗岩(267 Ma), 晚期随着俯冲作用加剧, 发生中高压相变质, 并沿消减带逐步形成俯冲增生杂岩楔.晚二叠世在柴达木和若尔盖微陆块相互作用下, 发生弧-陆碰撞对接, 昆秦接合部地区苦海—赛什塘分支洋闭合, 弧-陆碰撞过程形成了晚二叠世搓卡碰撞型含白云母花岗岩和格曲组同碰撞磨拉石沉积.Abstract: A branching ocean basin, to be known as the Kuhai-Saishitang branching ocean, has been discovered in the area between the Kunlun and Qinling Mountains, China. The Kuhai-Saishitang branching ocean was discovered by detailed mapping and analysis, which revealed an ophiolite complex in a north-north-east orientated branching basin connected to the (Buqingshan) -Animaqing ocean. The basin includes Xueqiong and Cuozama MOR-type ophiolites which indicate that spreading of the basin took place in the Late Devonian-Carboniferous. This is supported by an Ar40/Ar39 age for the ophiolite complex/compound (which compound?) of (368.6±1.4) Ma, which is contemporaneous with the formation of the Buqingshan- (Animaqing) ocean. The ophiolite present indicates that the oceanic lithosphere of the Kuhai-Saishitang basin formed in a small, immature ocean basin. One behavior of expansion is tectonic hot event heavy recorded in cracking block slice and crystal base, for instance, amphibole 40Ar/39Ar low temperature plateau age of amphibolite in Longtong area is (358.9±3.2) Ma, biotite 40Ar/39Ar plateau age of mica-quartz tectonic schist in Yangqu area is (387.3±2.3) Ma, Rb-Sr isochrone age of biotite plagioclase-gneiss in Kuhai area is (336±2.2) Ma, amphibole 40Ar/39Ar low temperature plateau age of amphibolite in Zanaheruo is (376.9±0.9) Ma, these ages reflect cracking time limit. The pyroxene 39Ar/40Ar plateau age of diabase in cracking slice in Lalongwa is 398.4 Ma which reflects that expansion began in the Devonian. There is evidence of the formation of a volcanic island arc in the Early Permian (264 Ma) and subduction occurring along the south-east edge of the (Chaidamu) minor continental block in the Early-Middle Permian (267 Ma). The subduction is marked by the presence of subduction-type granite which was altered by middle-high pressure metamorphism as the strength of the subduction increased. Also associated with the subduction zone is a hyperplasia mélange wedge. In the Late Permian, the interaction of the Chaidamu and Ruoergai minor continental blocks caused arc-continent collision which resulted in the closure of the Kuhai-Saishitang branching ocean and the formation of collision-type mica-containing granite in the Cuoka area and the deposition of syn-collision molasse sediments of the Gequ Group.
-
表 1 秦昆接合部海西期岩浆事件及造山过程
Table 1. Hercynian orogenic process and magmatic event on the Kunlun marches with Qinling
-
[1] Huang, J.C., Zhang, K.X., Zhu, M.Y., et al., 1999. Paleomagnetic evidence for Hercynian-Indosinian tectonopaleogeographical evolution in eastern Kunlun orogenic zone. Earth Science—Journal of China University of Geosciences, 24(2): 155-160(in Chinese with English abstract). [2] Huang, J.Q., Chen, B.W., 1987. The evolution of the Tethys in China and adjacent regions. Geological Publishing House, Beijing(in Chinese). [3] Wang, B.Z., Zhang, Z.Y., Zhang, S.Q., et al., 2000. Geological features of lower Paleozoic ophiolith in Kuhai-Saishitang region, eastern section of eastern Kunlun. Earth Science—Journal of China University of Geosciences, 25(6): 592-598(in Chinese with English abstract). [4] Wang, G.C., Zhang, K.X., Liang, B., et al., 1997. Texture and tectonic slices of the eastern Kunlun orogenic belt. Earth Science—Journal of China University of Geosciences, 22(4): 352-356(in Chinese with English abstract). [5] Xiao, X.C., Li, T.D., Li, G.C., et al., 1988. Tectonic evolution of the lithosphere of the Himalayas(general review). Geological Publishing House, Beijing(in Chinese). [6] Xu, Z.Q., Hou, L.W., Wang, Z.X., et al., 1992. Orogenic processes of the Songpan-Ganze orogenic belt of China. Geological Publishing House, Beijing(in Chinese). [7] Yin, H.F., Zhang, K.X., 1998. Evolution and characteristics of central orogenic belt. Earth Science—Journal of China University of Geosciences, 23(5): 437-441(in Chinese with English abstract). [8] Zhang, K.X., Chen, N.S., Wang, Y.B., et al., 1997. A preliminary research on the sequence reconstruction of nonSmith stratigraphy in eastern Kunlun orogenic belt. Earth Science—Journal of China University of Geosciences, 22(4): 343-346(in Chinese with English abstract). [9] Zhang, K.X., Huang, J.C., Yin, H.F., et al., 2000. Application of radiolarians and other fossils in non-Smith strata: Exemplified by the Animaqing melangd belt in eastern Kunlun mountains. Science in China(Series D), 43(4): 364-374. doi: 10.1007/BF02959447 [10] Zhang, K.X., Yin, H.F., Zhu, Y.H., et al., 2001. Theory, method and practice to geological mapping in mélange district of orogenic belts. China University of Geosciences Press, Wuhan, 1-165(in Chinese). [11] Zhang, K.X., Yin, H.F., Zhu, Y.H., et al., 2003. Smith strata and non-Smith strata. Earth Science—Journal of China University of Geosciences, 28(4): 361-369(in Chinese with English abstract). [12] Zhang, Z.Y., Zhang, K.X., Yu, Q.W., et al., 2002. Method of 1: 250 000 regional geological surveying in orogenic belts. Earth Science—Journal of China University of Geosciences, 27(4): 377-385(in Chinese with English abstract). [13] 黄继春, 张克信, 朱明艳, 等, 1999. 东昆仑造山带海西-印支期构造古地理演化的古地磁证据. 地球科学———中国地质大学学报, 24(2): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.011.htm [14] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社. [15] 王秉璋, 张智勇, 张森琦, 等, 2000. 东昆仑东端苦海—赛什塘地区晚古生代蛇绿岩的地质特征. 地球科学———中国地质大学学报, 25(6): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006009.htm [16] 王国灿, 张克信, 梁斌, 等, 1997. 东昆仑造山带结构及构造岩片组合. 地球科学———中国地质大学学报, 22(4): 352-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.003.htm [17] 肖序常, 李廷栋, 李光岑, 等, 1988. 喜马拉雅岩石圈构造演化(总论). 北京: 地质出版社. [18] 许志琴, 侯立玮, 王宗秀, 等, 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社. [19] 殷鸿福, 张克信, 1998. 中央造山带的演化及其特点. 地球科学———中国地质大学学报, 23(5): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm [20] 张克信, 陈能松, 王永标, 等, 1997. 东昆仑造山带非史密斯地层序列重建方法初探. 地球科学———中国地质大学学报, 22(4): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX704.001.htm [21] 张克信, 殷鸿福, 朱云海, 等, 2001. 造山带混杂岩区地质填图理论、方法与实践. 武汉: 中国地质大学出版社. [22] 张克信, 殷鸿福, 朱云海, 等, 2003. 史密斯地层与非史密斯地层. 地球科学———中国地质大学学报, 28(4): 361369. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304000.htm [23] 张智勇, 张克信, 于庆文, 等, 2002. 造山带区1/25万区域地质调查方法. 地球科学———中国地质大学学报, 27(4): 377-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200204004.htm