Variations of Siliceous Microorganisms in Surface Sediments of the Bering Sea and Their Environmental Control Factors
-
摘要: 中国首次北极科学考察在白令海采取了12个表层沉积物样品, 其中对硅质生物和陆源碎屑的详细研究发现, 它们主要由硅藻、放射虫和海绵骨针组成.其中, 硅藻在样品中的丰度均占绝对优势, 高出放射虫和海绵骨针一个数量级.它们与环境控制因素关系的分析表明, 硅藻、放射虫和海绵骨针丰度的高低及其保存程度与深度、温度、盐度和受大规模季节性气候变化控制的表层海水的高营养和高生产力, 以及陆源物质输入的变化密切相关.这一研究结果对白令海第四纪的古气候与古海洋学研究具有十分重要的意义.Abstract: Based on the quantitative studies of siliceous microorganisms and terrestrial detritus in 12 surface sediment samples, which were recovered by the First Chinese National Arctic Expedition team, in the Bering Sea, it goes without saying that diatom abundance is dominant within the microorganisms which consists of diatoms, radiolarians and sponge spicules. The relationship between the microorganisms and environmental control factors, for example, water depth, temperature and salinity are analyzed and discussed. It is evident that their abundance change and preservation are associated closely with these environmental control factors, and high surface nutrient and productivity controlled by the variations of large scale seasonal climate and input of terrestrial detritus. This investigation is very significant for the further studies on paleoclimate and paleoceanography in the Bering Sea.
-
表 1 白令海表层沉积物站位位置、水深、温度和盐度
Table 1. Location, water depth, temperature and salinity of surface sediments in the Bering Sea
表 2 白令海表层沉积物中硅质生物丰度及其保存状况
Table 2. Abundance and preservation of siliceous microorganisms in surface sediments of the Bering Sea
-
[1] Abelmann, A., Brathauer, U., Gersode, R., et al., 1999. Radiolarian-based transfer function for the estimation of sea-surface temperatures in the Southern Ocean(Atlantic sector). Paleoceanography, 14(3): 410-421. doi: 10.1029/1998PA900024 [2] Bailey, J.W., 1856. Notice of microscopic forms found in soundings in the Sea of Kamchatka. American Journal of Science Arts, 13: 1-6. [3] Blueford, J.R., 1981. Radiolaria from the Navarin basin. In: Carlson, P., Karl, H., eds., Sea floor geologic hazards, sedimentology, and bathymetry: Navarin basin province, northwest Bering Sea. U.S. Geological Survey Open-file Report, 81-1217: 130-137. [4] Blueford, J.R., 1983. Distribution of Quaternary radiolarian in the Navarin basin geologic province, Bering Sea. Deep-Sea Research, 30(7A): 763-781. [5] Calvert, S.E., 1974. Deposition and diagenesis of silica in marine sediments. In: Hsü, K. J., Jenkyns, H. C., eds., Pelagic sediments: On land and under the sea. Spec. Publs Int. Ass. Sediment. 1: 273-299. Blackwell Scientific Publications, Oxford. [6] Cheng, Z.B., Shi, X.F., Gao, A.G., et al., 2000. Radiolaria fossils of the surface sediments in the Bering Sea and its sedimentary environment. Chinese Journal of Polar Research, 12(1): 24-31(in Chinese with English abstract). [7] Dogiel, V.A., Reshetnyak, V.V., 1952. Material on radiolarians of northwestern part of the Pacific Ocean. Investigations ofthe Far East Sea, USSR, 3: 5-35. [8] Gardner, J., Dean, W., Vallier, T., 1980. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea. Marine Geology, 34: 299-330. [9] Gardner, J., Dean, W., Klise, D., 1982. A climate-related oxidizing event in deep-sea sediment from the Bering Sea. Quaternary Research, 18: 91-107. doi: 10.1016/0033-5894(82)90023-0 [10] Johnson, T.C. Jr., 1974. The dissolution of siliceous microfossils in surface sediments of the eastern tropical Pacific. DeepSea Research, 21: 851-864. [11] Johnson, T.C., 1976. Controls on the preservation of biogenic opal in sediments of the eastern Tropical Pacific. Science, 192: 887-890. doi: 10.1126/science.192.4242.887 [12] Joly, K., Adams, L., 2002. Evaluating the impacts of wildland fires on Caribou in interior Alaska. Arctic Research, 2: 63-67. [13] Ling, H.Y., Stadum, C.J., Welch, M.L., 1970. Polycystine Radiolaria from Bering Sea surface sediment. In: Proceedings of the Ⅱ planktonic conference. Edizioni Technoscienza, Roma, 705-729. [14] Ling, H.Y., 1973. Radiolaria: Leg 19. Initial reports of the Deep Sea Drilling Project, Vol. 19. U. S. Government Printing Office, Washington, 777-797. [15] Lisitzin, A.P., 1972. Sedimentation in the world ocean. Society of Economic Paleontologists and Mineralogists, Special Publication, 17: 149-162. [16] Naidu, A., Creager, J., Mowatt, T., 1982. Clay mineral dispersal patterns in the north Bering and Chukchi Seas. Marine Geology, 47: 1-15. doi: 10.1016/0025-3227(82)90016-0 [17] Niebauer, H., Alexander, V., Henrichs, S., 1995. A time-series study of the spring bloom at the Bering Sea ice edgeⅠ. Physical processes, chlorophyll and nutrient chemistry. Continental Shelf Research, 15(15): 1850-1877. [18] Nigrini, C., 1970. Radiolarian assemblages in the North Pacific and their applications to a study of Quaternary sediments in core V 20-130. Geological Society of America Memoir, 126: 139-183. [19] Reshetnyak, V.V., 1966. Deep water Phaeodarian radiolarians in of the northwest Pacific Ocean. Academy of Science, USSR, Institute of Zoology, 94: 1-20. [20] Robinson, J. H., 1975. Glacial to interglacial oceanographic changes in the northwest Pacific, including a continuous record of the last 400, 000 years. Ph. D. Thesis., Columbia University, New York, 326. [21] Sancetta, C., 1981. Oceanographic and ecologic significance of diatoms in surface sediments of the Bering and Okhotsk Seas. Deep-Sea Research, 28A: 789-817. [22] Sancetta, C., 1983a. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Sea Research, 30: 851-869. doi: 10.1016/0198-0149(83)90004-3 [23] Sancetta, C., Robinson, S., 1983b. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quaternary Research, 20: 232-245. doi: 10.1016/0033-5894(83)90079-0 [24] Sancetta, C., Heusser, L., Labeyrie, L., et al., 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals. Marine Geology, 62: 55-68. [25] Springer, A., McRoy, P., Flint, M., 1996. The Bering Sea green belt: Shelf-edge processes and ecosystem production. Fisheries Oceanography, 5(3/4): 205-223. [26] Takahashi, K., Fujitani, N., Yanada, M., et al., 2000. Longterm biogenic particle fluxesin the Bering Sea and the central subarctic Pacific Ocean, 1990-1995. Deep-Sea Research Ⅰ, 47: 1723-1759. doi: 10.1016/S0967-0637(00)00002-9 [27] Takahashi, K., Fujitani, N., Yanada, M., 2002. Long term monitoring of particle fluxesin the Bering Sea and the central subarctic Pacific Ocean, 1990-2000. Progress in Oceanography, 55: 95-112. doi: 10.1016/S0079-6611(02)00072-1 [28] The First Chinese National Arctic Research Expedition Team, 2000. Report of the first Chinese national arctic research expedition. China Ocean Press, Beijing, 1-191(in Chinese). [29] Wang, R., Clemens, S., Huang, B., et al., 2003. Late Quaternary paleoceanographic changesin the northern South China Sea(ODP Site 1146): Radiolarian evidence. Journal of Quaternary Science, 18(8): 745-756. doi: 10.1002/jqs.784 [30] 程振波, 石学法, 高爱国, 等, 2000. 白令海表层物中的放射虫与海洋环境. 极地研究, 12(1): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200001003.htm [31] 中国首次北极科学考察队, 2000. 中国首次北极科学考察报告. 北京: 海洋出版社, 1-191.