Beyond Plate Tectonics: What Do We Do in Structural Geology?
-
摘要: 对近十年来全球构造学和构造地质学的重要进展进行了简要评述.30年前建立的全球构造理论改变了人们对地球及其演化的认识.作为固体地球统一理论的板块构造主要涉及刚性板块边界之间的变形、地震活动和火山作用.至今还没有完整理论阐明板块运动的驱动力和地幔对流机制.板块边界和板内变形等许多问题仍然无法回答.大陆岩石圈和大洋岩石圈在成分、厚度和力学强度方面有明显的差别, 因此现有板块构造不完全适合于大陆构造.大陆地壳和地幔流变学的综合研究是认识大陆构造和超越板块构造的最佳途径.流变学是大陆造山带几何学和动力学的桥梁.大陆岩石圈对构造作用、重力作用和热作用的响应在很大程度上取决于其流变强度.岩石圈流变性质是岩石圈分层和塑性流动的主导因素.大量透入性变形和巨型大陆造山带内部构造显示非刚性特征.大陆构造和力学行为主要由地壳强度而不是地幔强度所控制.从大陆岩石圈多层性和力学强度不均匀性表征看, 现在是抛弃传统“三明治”构造模式的时候了.面对地球系统科学和地球动力学新思维发展趋势, 多学科综合研究大陆构造(造山带)和加速高水平构造地质学人才的培养是我国构造地质学发展的最紧迫任务Abstract: The major progresses of the global tectonics and structural geology in the last 10 years are reviewed. The new global tectonics that emerged three decades ago profoundly changed our understanding of the earth and its evolution. Plate tectonics as a unifying theory of the earth mainly is connected with deformation, seismicity and volcanism within plate boundaries. No comprehensive theory accounts satisfactorily for the driven force of plate motion and mechanism of mantle convection. Many of the problems of plate boundary formation and inter-plate formation remain unanswered. Continental lithosphere is significantly different from oceanic lithosphere in the aspects of composition, thickness and mechanical strength. However, the plate tectonics is not applied to continental tectonics as well. Comprehensive study for rheology of continental crust and the upper mantle is the best way in understanding continental structure and beyond plate tectonics. Rheology is the liaison between geometry and dynamics of continental orogeny. Responses of continental lithosphere to structuring, gravitation and thermodynamics largely depend on its rheological strength. Rheological strength of continental lithosphere is closely connected with stratification and heterogeneity. The pervasive deformation and internal structure of wide continental orogenic belts indicate non-rigid behavior. Continental tectonics and mechanical behavior are controlled by strength that resides mainly in the crust rather than in the mantle. From the view of multi-layering and mechanical heterogeneity of continental lithosphere, it is time to abandon the sandwich model. Facing development trend of earth science system and new thinking of geodynamics, multidisciplinary study on continental structure (orogenic belts) and promptly training outstanding talent is an urgent task.
-
Key words:
- plate tectonics /
- beyond plate tectonics /
- continental structure /
- rheology /
- structural geology /
- talent construction
-
图 1 水对岩石圈力学强度的影响(Jackson, 2002)
Fig. 1. Effect of water on mechanical strength of lithosphere
-
[1] Ahrens, T.J., 1989. Water storage in the mantle. Nature, 342: 122-123. doi: 10.1038/342122a0 [2] Bai, Q., Kohlstedt, D.L., 1992. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357: 672-674. doi: 10.1038/357672a0 [3] Bascou, J., Barrual, G., Vauchez, A., et al., 2001. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 342: 61-80. doi: 10.1016/S0040-1951(01)00156-1 [4] Bell, D.R., Rossman, G.R., 1992. Water in the earth's mantle: The role of nominally anhydrous minerals. Science, 255: 1391-1397. doi: 10.1126/science.255.5050.1391 [5] Burg, J. P., Ford, M., 1997. Orogeny through time: An overview. In: Burg, J. P., Ford, M., eds., Orogeny through time. Geological Society of London, London, UK, 1-17. [6] Chopin, C., 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet. Sci. Lett. , 212: 1-14. doi: 10.1016/S0012-821X(03)00261-9 [7] Drury, M.R., Vissers, R., 1991. Shear localization in upper mantle peridotite. Pure and Applied Geophysics, 137(4): 439-460. doi: 10.1007/BF00879044 [8] Gao, S., Jin, Z.M., 1997. Delamination and its geodynamical significances for the crust-mantle evolution. Geological Science and Technology Information, 16(1): 1-9(in Chinese with English abstract). [9] Green, H.W., Dobrzhinetskaya, L., Bozhilou, K.N., 2000. Mineralogical and experimental evidence for very deep exhumation from subduction zones. Journal of Geodynamics, 30: 61-76. doi: 10.1016/S0264-3707(99)00027-7 [10] Guo, A.L., Zhang, G.W., Cheng, S.Y., 2004. Beyond plate tectonics— Review on the opportunity for continental geology research. Progress in Natural Science, 14(7): 729-733(in Chinese with English abstract). [11] Hollister, L.S., Cranford, M.L., 1986. Melt enhanced deformation: A major tectonic process. Geology, 14: 558-561. [12] Hwang, S.L., Shen, P.Y., Chu, H.T., et al., 2000. Nanometer sizeα-PbO2type in garnet: A thermo-barameter for ultra-high-pressure metamorphism. Science, 288: 321-324. doi: 10.1126/science.288.5464.321 [13] Jackson, J.A., Austrheim, H., Mckenzie, D., et al., 2004. Metastability, mechanical strength and the support of mountain belts. Geology, 32(7): 625-628. doi: 10.1130/G20397.1 [14] Jackson, J., 2002. Faulting, flow and the strength of the continental lithosphere. International Geology Review, 44: 39-61. doi: 10.2747/0020-6814.44.1.39 [15] Jackson, J., 2002. Strength of the continental lithosphere: Time to abandon the Jelly Sandwich? GSA Today, Septermber, 4-10. [16] Jin, S.Y., 1997. Seismic anisotropy of continental lithosphere and dynamical implications. In: Zhang, B.X., Hong, D. W., Wu, X.Z., eds., Modern methods of study for lithosphere. Publishing House of Atomic Energy, Beijing, 79-88(in Chinese). [17] Jin, Z.M., 2001. Curriculum innovation of earth sciences in the university of Minnesota and its implications. Journal of China University of Geosciences(Social Science Edition), 1(1): 57-61(in Chinese). [18] Jin, Z.M., Gao, S., 1996. Underplating and its geodynamical significances for the crust-mantle evolution. Geological Science and Technology Information, 15(1): 1-7(in Chinese with English abstract). [19] Karato, S.I., Wu, P., 1993. Rheology of the upper-mantle: A synthesis. Science, 260: 771-778. doi: 10.1126/science.260.5109.771 [20] Kay, R., Kay, S., 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177-189. doi: 10.1016/0040-1951(93)90295-U [21] Kohlstedt, D.L., Evnns, B., Mackuell, S.T., 1998. Strength of the lithosphere-constraints by laboratory experiments. J. Geophys. Res. , 100(B): 17587-17602. [22] Kohlstedt, D.L., Zimmerman, M.E., 1996. Rheology of partially molten mantle rocks. Annu. Rev. Earth Planet. Sci. , 24: 41-62. doi: 10.1146/annurev.earth.24.1.41 [23] Maggi, A., Jackson, J.A., Mckenzie, D., et al., 2000a. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28: 495-498. [24] Maggi, A., Jackson, J.A., Priestley, K., et al., 2000b. A re-assessment of focal depth distribution in southern Iran, the Tien Shan and northern India: Do earthquake really occur in the continental mantle? Geophys. Res. Lett. , 143: 629-661. [25] McNamara, D.E., 1994. Shear wave anisotropy beneath the Tibetan plateau. J. Geophys. Res. , 99(B): 13655-13665. [26] Newton, R.C., 1989. Metamorphic fluids in the deep crust. Ann. Rev. Earth Planet. Sci. , 17: 385-412. doi: 10.1146/annurev.ea.17.050189.002125 [27] Pili, E., Richard, J.M., 1997. Lithospheric shear zone and mantle-crust connections. Tectonophysics, 280(1-2): 15-29. doi: 10.1016/S0040-1951(97)00142-X [28] Prior, D.J., Boyle, A.B., Brenker, F., et al., 1999. The application of electron back-scatter diffraction and orientation contrast image in the SEM to textural problems in rocks. American Mineralogist, 84: 1741-1759. doi: 10.2138/am-1999-11-1204 [29] Prior, D.J., Wheoler, J., Brenker, F.E., et al., 2000. Crystal plasticity of natural garnet: New microstructural evidence. Geology, 28: 1003-1006. [30] Rosenbergs, C.L., 2001. Deformation of partially molten granite: A review and comparison of experimental and natural case studies. Int. J. Earth Science(Geol. Rundsch), 90: 60-76. [31] Ribe, N.M., 1992. On the relation between seismic anisotropy and finite strain. J. Geophys. Res. , 93(B36): 8737-8747. [32] Richards, M.A., Gordon, R.G., Van der Hilst, R., D., 2000. The history and global plate motions. Geophysical Monograph Series, American Geophysical Union, Washington, DC, 1-398. [33] Seber, D., Barasangi, M., Ibenbrahim, A., et al., 1996. Geophysical evidence for lithospheric delamination beneath the Alboran sea and Rif-Betic mountains. Nature, 379: 785-790. doi: 10.1038/379785a0 [34] Silver, P.G., Chan, W.W., 1998. Implication for continental structure and evolution from seismic anisotropy. Nature, 375: 34-39. [35] Sun, C.Q., Qu, S.S., 2002. Status and trends of the international earth science studies. Advance in Earth Sciences, 17 (3): 344-347(in Chinese with English abstract). [36] Thomson, A.B., 1992. Water in the earth's mantle. Nature, 358: 295-302. doi: 10.1038/358295a0 [37] Van der Hilst, R., Engdahl, R., Spakman, W., 1991. Tomographic imaging of subducted lithosphere below northwest Pacific islands arc. Nature, 353: 37-43. doi: 10.1038/353037a0 [38] Van der Hilst, R., Widiyantro, S., Engdanl, R., 1997. Evidence for deep mantle circulation from global tomography, Nature, 386: 578-584. doi: 10.1038/386578a0 [39] Vissers, R., Drury, M.R., 1995. Mantle shear zones and their effect on lithosphere strength during continental breakup. Tectonophysics, 249(3-4): 155-171. doi: 10.1016/0040-1951(95)00033-J [40] Wang, P. X., 2002. Crossing the Earth's sphere— On the "Earth systemic process" meeting in Edingburg. Advance in Earth Sciences, 17(3): 311-313(in Chinese with English abstract). [41] Wernicke, B., Clayton, R., Ducea, M., et al., 1996. The origin of high mountain in the continents, the southern Sierra Nevada. Science, 271: 190-193. doi: 10.1126/science.271.5246.190 [42] Xia, Q.K., Chen, D.G., Zhi, X.C., 1999. Research progress in structural water in nominally anhydrous mantle minerals. Advance in Earth Sciences, 14(5): 452-457(in Chinese with English abstract). [43] Xu, S., Okay, A.I., Ji, S., et al., 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80-82. doi: 10.1126/science.256.5053.80 [44] Yang, X.S., Jin, Z.M., 1999. Relationship between intracrustal partial melting and thickening of Tibetan plateau crust. Geological Science and Technology Information, 18(1): 24-29(in Chinese with English abstract). [45] Zhang, J.F., Green, H.W., Bozhilov, et al., 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633-636. doi: 10.1038/nature02475 [46] Zhang, J.F., Jin, Z.M., Green, H.W., et al., 2001. Hydroxye in continental deep subduction zone: Evidence from UHP eclogite of the Dabie mountains. Chinese Science Bulletin, 46(7): 591-596. [47] Zhao, W.X., Hu, Y.X., Xia, F., et al., 2004. K-rich larnellar exsolution in clinopyroxene: Constraint on the depth of peridotite source at Zhimafang. Chinese Science Bulletin, 49(7): 711-715. doi: 10.1007/BF03184270 [48] Zhou, X.M., Li, W.X., 2000. Origin of Late-Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269-287. doi: 10.1016/S0040-1951(00)00120-7 [49] Zhu, Y.F., Ogasawara, A.Y., 2002. Phologpite and coesite exsolusion from super-silicic clinopyroxene. International Geology Review, 44: 831-836. doi: 10.2747/0020-6814.44.9.831 [50] 高山, 金振民, 1997. 拆沉作用(Delamination)及其壳-幔演化动力学意义. 地质科技情报, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.000.htm [51] 郭安林, 张国伟, 程顺有, 2004. 超越板块构造———大陆地质研究新机遇评述. 自然科学进展, 14(7): 729-733. doi: 10.3321/j.issn:1002-008X.2004.07.002 [52] 金淑燕, 1997. 大陆岩石圈各向异性和动力学意义. 见: 张炳熹, 洪大卫, 吴宣志主编, 岩石圈研究的现代方法. 原子能出版社, 北京, 79-88. [53] 金振民, 2001. 明尼苏达大学地球科学课程改革及启示. 中国地质大学学报(社会科学版), 1(1): 57-61. doi: 10.3969/j.issn.1671-0169.2001.01.019 [54] 金振民, 高山, 1996. 底侵作用(underplating)及其壳-幔演化动力学意义. 地质科技情报, 15(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199602002.htm [55] 孙成权, 曲速升, 2002. 国际地球科学发展态势. 地球科学进展, 17(3): 344-347. doi: 10.3321/j.issn:1001-8166.2002.03.008 [56] 汪品先, 2002. 穿越圈层, 横跨时空———记"地球系统过程"国际大会. 地球科学进展, 12(3): 311-313. doi: 10.3321/j.issn:1001-8166.2002.03.002 [57] 夏群科, 陈道公, 支霞臣, 1999. 名义上无水的地幔矿物中结构水的研究进展. 地球科学进展, 14(5): 452-457. doi: 10.3321/j.issn:1001-8166.1999.05.005 [58] 杨晓松, 金振民, 1999. 部分熔融与青藏高原地壳加厚的关系. 地质科技情报, 18(1): 24-29. doi: 10.3969/j.issn.1000-7849.1999.01.005