Role of Large-Scale Strike-Slip Faults in the Formation of Petroleum-Bearing Compressional Basin-Mountain Range Systems
-
摘要: 了解含油气盆地的形成及其演化的影响因素对于含油气盆地的勘探和开发是至关重要的.以美国西部的圣安德烈斯断裂带及伴生的南加州油气盆地作为参考, 对中国青藏高原北部与阿尔金走滑断裂系相关的盆-山构造进行了剖析.探讨阿尔金走滑断裂系在其演化过程中, 怎样控制区域应力场、变形构造及盆地的形成, 进而制约油气的迁移和圈闭.分析结果表明与圣安德烈斯断裂带在美国南加州的盆-山构造体系所起的作用相比较, 阿尔金走滑断裂系在青藏高原北部的盆-山构造体系的形成和演化中起相似的作用.青藏高原相对于塔里木盆地的斜向运动导致在阿尔金走滑断裂的东南形成走滑-挤压构造域.形成一系列的走滑和推覆构造, 在地形上表现为包括柴达木盆地在内的有序的盆-山相间的构造体系.与南加州富含油气的盆地相似, 阿尔金走滑断裂及相配套的走滑-逆冲推覆构造促使在这些盆地中形成富集油气的构造.Abstract: Understanding the factors that affect the formation and evolution of petroleum-bearing sedimentary basins plays a critical role in the prospecting and exploitation of oil fields. The formation and evolution of the highly-order coastal and on-land petroleum-bearing Cenozoic basins and their bounding mountain ranges in southern California, USA were initiated and controlled by the San Andreas fault system, a large-scale plate boundary transform fault that separates the Pacific plate from the North American plate. The northeast oblique movement of the Pacific plate relative to the North American plate in conjunction with the big bend of the San Andreas fault in southern California produces intense contractional strain across the Transverse Ranges and leads to the formation of a series of fault and fold structures that shape the salient landscape of southern California. For comparison, we have conducted detailed structural analyses on the basin-mountain range systems in the northern Qinghai-Tibet plateau to discuss the role of the Altyn Tagh fault in (1) development of regional contractional stress field; (2) formation of structures and sedimentary basins; (3) generation of structures that facilitate the migration and capture of oil and gas.Resultsshow that the Altyn Tagh fault has played a similar role in the formation of the spectacular basin-mountain systems to that of the San Andreas fault. The oblique convergence of the Qinghai-Tibet terrane relative to the Tarim basin resulted in the formation of transpressional tectonic regime to the southeastern of the Altyn Tagh fault. Such oblique convergence resulted in a series of strike-slip and thrust faults. As a consequence, the areas from the Kunlun Mountains to the Qilian Mountains form spectacular landforms characterized by alternations of basins and mountain ranges. For both cases of the southern California and the northern Qinghai-Tibet plateau, thrust faulting not only provides a viable mechanism for the migration of oil or gas, but also resulted in fault-propagation folds which serve as the favorable capture structure for oil and gas. One of the key factors that generate such a highly organized petroleum-bearing basin-mountain system is oblique convergence induced slip partitioning which results in the dextral horizontal slip along a major strike slip fault and vertical slip along numerous blind or exposed thrust faults.
-
图 1 圣安德烈斯断裂带与南加州近海和陆上的含油气盆地及地貌简化示意图
SNB.Sierra Nevada花岗岩岩基; PRB.半岛山脉花岗岩岩基; SAF.圣安德烈斯断裂; GF.Garlock断裂; PKCF.古Kern Canyon断裂; BPF.Big Pine断裂; SM.Santa Maria盆地; LA.洛杉矶盆地; SB-VT.Santa Barbara-Ventura盆地; MT.Montery湾盆地; A-B.为相应于图 2中的横穿洛杉矶盆地和San Gabriel山脉的剖面线.实线为走滑断裂, 虚线为逆冲推覆断层, 带箭头的虚线为太平洋板块相对于北美板块的现今运动方向.图中的大谷地为中生代的弧前盆地, 也是美国主要的油区之一
Fig. 1. Simplified map showing the San Andreas fault and its adjacent costal and in-land petroleum-bearing Cenozoic basins in southern California, USA
图 2 地震反射剖面、石油勘探及地震定位所揭示的洛杉矶盆地中一系列的盲逆冲推覆构造
a.地震反射剖面及石油钻探揭示的盲逆冲推覆构造及断层生长褶皱(据Shaw and Shreaer, 2000); b.图2a中所揭示的逆冲断层向深部延伸和1987年Whittier Narrows地震发生所在的断面相吻合(据Dolan et al., 2003); c.LARSE综合研究项目所确定的从南加州海岸线到Mojave沙漠的简化构造剖面(据Fuis et al., 2001修改).NIF.Newport-Inglewood走滑断层; EPT.Elysian Park逆冲断层; WF.Whittier逆冲断层; PHF.Puente Hills逆冲断层; SMF.Sierra Madre逆冲断层; SP.San Pedra山脉; SM.Santa Monica山脉; a和b为地震反射所揭示的可能为液态物质的亮点.Qt.第四纪沉积; Tfu, Tfl, Tp和Tv为第三纪含油气沉积地层; Plio.上新世; S.L.为海平面
Fig. 2. Blind and exposed thrust fault and fold structures revealed by seismic reflection profiling, oil-drilling and relocation of earthquake focus in the Los Angeles basin
图 4 青藏高原北部的新生代构造平面及构造剖面
a.青藏高原北部的新生代构造平面图: 1.盆地; 2.山脉; 3.大型左型走滑断裂; 4.逆冲断裂; 5.左行走滑断裂; 6.右型走滑断裂; 7.地质界线; 8.剖面位置.b.青藏高原北部构造剖面图: 1.山体; 2.盆地; 3.逆冲断裂; 4.左行走滑断裂.①.祁连盆-山构造域; ②.柴达木盆-山构造域; ③.巴颜喀拉-松甘盆-山构造域.盆地: B1.酒泉盆地; B2.苏海盆地; B3.柴北缘盆地; B4.青海湖盆地; B5.西宁盆地; B6.柴达木盆地; B7.共和盆地; B8.贵德盆地; B9.阿牙库木克盆地; B10.阿奇克库都克盆地; QDMB.柴达木盆地; SHB.苏海盆地; JQB.酒泉盆地.山脉: QLS.祁连山; ALTS.阿尔金山; QMTGS.祁漫塔格山; EKLS.东昆仑山; ALS.阿拉善地体; TRM.塔里木地体; BY.巴颜喀拉地体; QT.羌塘地体; MHS.马海山.走滑断裂: ALTF.阿尔金左行走滑断裂; HYF.海源左行走滑断裂; EKLF.东昆仑左行走滑断裂
Fig. 4. Simplified geologic map showing the Cenozoic structures and cross-sections showing the characteristic structures in the northern Qinghai-Tibet plateau
图 5 祁连山新生代构造平面及构造剖面
a.祁连山新生代构造平面图: 1.盆地; 2.山脉; 3.大型左型走滑断裂; 4.逆冲断裂; 5.左行走滑断裂; 6.正断裂; 7.剖面位置; 8.逆冲断裂; 9.地质界线.b.祁连山新生代构造剖面图: 1.山体; 2.盆地; 3.逆冲断裂; 4.左行走滑断裂.KTS.宽堂山; QLS.祁连山; TXS.大雪山; YMS.野马山; DHNS.党河南山; ALTS.阿尔金山; ALTF.阿尔金断裂; TRM.塔里木地体; QDM.柴达木地体; JQB.酒泉盆地; CMB.昌马盆地; SBCB.石堡城盆地; SBB.肃北盆地; YMB.野马盆地; YCWB.盐池湾盆地
Fig. 5. Simplified geologic map showing the Cenozoic structures and cross-sections showing the characteristic structures in the Qilian Mountains
图 6 柴达木北缘欧北凹陷红山地区逆冲推覆构造(姜洪川等, 1989)
1.不整合; 2.逆冲断裂; 3.早古生代褶皱; 4.有利的含油气构造部位.AnC.前石炭纪; C.石炭纪; DC.泥盆纪-石炭纪; Mz.中生代; Pz.古生代; E-N.老第三纪—新第三纪
Fig. 6. Cross-section showing the thrust fault and associated structures in the Hongshan area of Oubei depression, North Qaidam
图 7 青藏高原北部盆-山构造域中盆地封闭及快速堆积(Tapponnier, 2000)
BL.基准面
Fig. 7. Schematic diagram showing closure of the basins and rapid deposition within the basin-mountain system in the northern Qinghai-Tibet plateau
-
[1] Burchfiel, C., Zhang, P., Wang, Y., et al., 1991. Geology of the Haiyuan fault zone, Ningxia-hui autonomous region, China, and its relation to the evolution of the northeastern margin of the Tibetan plateau. Tectonics, 10: 1091-1110. doi: 10.1029/90TC02685 [2] Deng, Q., 1986. Variations in the geometry and amount of slip on the Haiyuan(Nanxi-Haushan) fault zone, China, and the surface rupture of the 1920 Haiyuan earthquake. Geophys. Monogr. Ser. , 37: 169-182. [3] Dolan, J.F., Christofferson, S.A., Shaw, J.H., 2003. Recognition of paleoearthquakes on the Puente Hills blind thrust fault, California. Science, 300: 115-118. doi: 10.1126/science.1080593 [4] Fuis, G.S., Ryberg, T., Godfrey, N.J., et al., 2001. Crustal structure and tectonics from the Los Angeles basin to the Mojave desert, southern California. Geology, 29: 15-18. https://pubs.geoscienceworld.org/gsa/geology/article-abstract/29/1/15/191930/Crustal-structure-and-tectonics-from-the-Los [5] He, D.F., Lü, X.X., Lin, Y.H., et al., 1996. Foreland basin analysis. Petroleum Industry Press, Beijing, 212(in Chinese). [6] Institute of Geology and Ningxia Institute of Seismology, SSB, 1990. Active tectonics of the Haiyuan fault. Seismology Press, Beijing(in Chinese). [7] Jiang, H.C., Gao, H.Z., 1989. A study on the thrust and nappe structure in the north margin of Chaidamu basin and its oil and gas prospect. Northwestern University Press, Xi'an, China, 79(in Chinese). [8] Jones, C.H., 2003. How faults accommodate plate motion. Science, 300: 1105-1106. doi: 10.1126/science.1084028 [9] Kennedy, B.M., Kharaka, Y.K., Evans, W.C., et al., 1997. Mantle fluids in the San Andreas fault system, California. Science, 278: 1278-1281. doi: 10.1126/science.278.5341.1278 [10] King, P.R., 2000. New Zealand's changing configuration in the last 100 million years: Plate tectonics, basin development, and depositional setting. 2000 New Zealand Petroleum Conference Proceedings, 15. [11] Kranzh, R.W., 1995. The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation. Journal of Structural Geology, 17(8): 1125-1137. doi: 10.1016/0191-8141(94)00129-N [12] Lasserre, C., 1999. Postglacial left slip-rate and past occurrence of M≥ 8 earthquakes on the western Haiyuan fault, Gansu, China. J. Geophys. Res. , 104(17): 633-17, 651. [13] Li, H.B., 2001. Timing of the initation of the Altyn Tagh fault and its contribution to the uplift of the Northern Tibetan plateau. Ph. D. Thesis, Chinese Academy of Geological Sciences, Beijing(in Chinese). [14] Li, H.B., Xu, Z.Q., Chen, W., 1996. Deformational features and tectonic evolution of the south Kunlun strike-slip shear zone, East Kunlun Mountains. Acta Geoscientia Sinica, Special Issue: 16-21. [15] Li, H.B., Yang, J.S., Shi, R.D., et al., 2001. The relationship between faulted basin and mountain ranges along the Altyn Tagh Fault. Chinese Science Bulletin, 47(1): 63-67 (in Chinese). [16] Li, H.B., Yang, J.S., Xu, Z.Q., et al., 2001. Geological and geochronogy evidences of Indosinian strike-slipping for the Altyn Tagh fault. Chinese Science Bulletin, 46(16): 1333-1338(in Chinese). doi: 10.1360/csb2001-46-16-1333 [17] Liu, S.W., Gan, J.S., Yao, Y.S., et al., 1997. Strike-transform deformation of the northern margin fault of the West Qinling and the Haiyuan fault and their relation with the Longshan massif. Crustal Deformation and Earthquake, 17(3): 73-83(in Chinese with English abstract). [18] Liu, H.F., Li, X.Q., Liu, L.Q., et al., 2004. Petroleum play analysis and strike-slip system basin-mountain coupling. Geoscience, 18: 139-150(in Chinese with English abstract). [19] Liu, J., Klinger, Y., Sieh, K., et al., 2004. Six similar, sequential ruptures of the San Andreas fault, Carrizo plain, California. Geology, 32(8): 649-652. doi: 10.1130/G20478.1 [20] Liu, J., Sieh, K., Hauksson, E., 2003. A structural interpretation of the aftershock "cloud" of the 1992 Mw7.3 Landers earthquake. Bull. Seism. Soc. Am. , 93(3): 1333-1344. doi: 10.1785/0120020060 [21] Oskin, M., Sieh, K., Rockwell, T., et al., 2000. Active parasitic folds on the Elysian Park anticline: Implications for seismic hazard in central Los Angeles, California. Geological Society of America Bulletin, 112: 693-707. doi: 10.1130/0016-7606(2000)112<693:APFOTE>2.0.CO;2 [22] Peltzer, G., Tapponnier, P., Zhang, Z., et al., 1985. Neogene and Quaternary faulting in and along the Qinling Shan. Nature, 317: 500-505. doi: 10.1038/317500a0 [23] Shaw, J.H., Shearer, P.M., 1999. An elusive blind-thrust fault beneath metropolitan Los Angeles. Science, 283: 1516-1518. doi: 10.1126/science.283.5407.1516 [24] Spotila, J., Farley, K., Sieh, K., 1998. Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics, 17: 360-378. doi: 10.1029/98TC00378 [25] Sylvester, A.G., 1988. Strike-slip faults. Geological Society America Bulletin, 100: 1666-1703. doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2 [26] Tapponnier, P., 2000. Neotectoincs. In: Xu, Z.Q., Yang, J.S., Tapponnier, P., et al., eds., Field trip guide, international symposium on geoscience of the northern Qinghai-Tibet plateau—Marking the 20th Anniversary of the Sino-French cooperative research on geoscience. Dunhuang, China. [27] Tapponnier, P., Meyer, B., Avouac, J.P., 1990. Active thrusting and folding in the Qilian Shan and decoupling between upper crust and crust and mantle in northeastern Tibet. Earth and Planetary Sciences Letters, 97: 382-403. doi: 10.1016/0012-821X(90)90053-Z [28] Tapponnier, P., Molnar, P., 1977. Active faulting and tectonics in China. J. Geophys. Res. , 82: 2905-2930. doi: 10.1029/JB082i020p02905 [29] Wittinger, G.F., Tapponier, P., Poupinet, G., et al., 1998. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault. Science, 74-76. [30] Wittinger, G., Masson, F., Poupinet, G., 1996. Seismic tomography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts. EPSL, 139: 263-279. doi: 10.1016/0012-821X(95)00235-5 [31] Wu, X.Z., Wu, C. L., Lu, J., 1995. Research on the fine crustal structure of the northern Qilian-Hexi corridor by deep seismic reflection. Acta Geophysica Sinica, 38(suppl. Ⅱ): 29-35(in Chinese with English abstract). [32] Xu, Z.Q., Li, H.B., Yang, J.S., et al., 2001. A large transpression zone at the south margin of the east Kunlun Mountains and oblique subduction. Acta Geologica Sinica, 75(2): 156-164(in Chinese with English abstract). [33] Xu, Z.Q., Jiang, M., Yang, J.S., 1996. Tectonophysical process at depth for the uplift of the northern part of the Qinghai-Tibet plateau: Illustrated by the geological and geophysical comprehensive profile from Golmud to the Tanggula mountains, Qinghai Province, China. Acta Geologica Sinica, 70: 195-206(in Chinese with English abstract). [34] Xu, Z.Q., Jiang, M., Yang, J.S., et al., 1999. Mantle diapir inward intracontinental subduction: A discuss on the mechanism of uplift of the Qinghai-Tibet plateau. Geological Society of America, Special Paper, 328: 19-31. [35] Xu, Z.Q., Yang, J.S., Jiang, M., 2001. Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan plateau. Science in China(Series D), 31(Suppl. ): 1-7(in Chinese). doi: 10.1007/BF02911965 [36] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2004. The assembly of the Qinghai-Tibet plateau by amalgamation of terranes and its collisional dynamics. Geological Publication House, Beijing(in Press, in Chinese). [37] Xu, Z.Q., Yang, J.S., Zhang, J.X., et al., 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 73(3): 193-205(in Chinese with English abstract). [38] Yule, D., Sieh, K., 2003. Complexities of the San Andreas fault near San Gorgonio pass: Implications for large earthquakes. Journal of Geophysical Research, 109, B11, 2548, ETG 9, doi: 10.1029/2001JB000451. [39] Zhang, P., Molnar, P., Barchfiel, B.C., et al., 1988. Bounds on the Holocene slip rate of the Haiyuan fault, north-central China. Quat. Res. , 30: 151-164. doi: 10.1016/0033-5894(88)90020-8 [40] Zhang, W., Jiao, D., Zhang, P., et al., 1987. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake. Bull. Seismol. Soc. Am. , 77: 117-131. [41] Zhang, Y.Q., Vergely, P., Mercier, J., 1995. Active faulting in and along the Qinling Range(China)inferred from SPOT imagery analysis and extrusion tectonics of South China. Tectonophysics, 243: 69-95. doi: 10.1016/0040-1951(94)00192-C [42] Zhu, L., 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Sci. Lett. , 179: 183-190. doi: 10.1016/S0012-821X(00)00101-1 [43] 何登发, 吕修祥, 林永汉, 等, 1996. 前陆盆地分析. 北京: 石油工业出版社, 212. [44] 国家地震局地质研究所, 宁夏地震局, 1990. 海原活动断裂带. 北京: 地震出版社. [45] 姜洪川, 高焕章, 1989. 柴达木盆地北缘逆冲推覆构造及其含油气性研究. 西安: 西北大学出版社, 79. [46] 李海兵, 2001. 阿尔金断裂的形成时代及其走滑作用对青藏高原北部隆升的贡献. 中国地质科学院研究生院博士论文. [47] 李海兵, 杨经绥, 史仁灯, 等, 2001. 阿尔金走滑断陷盆地的确定及其与山脉的关系. 科学通报, 47(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200201015.htm [48] 李海兵, 杨经绥, 许志琴, 等, 2001. 阿尔金断裂带印支期走滑活动的地质及年代学证据. 科学通报, 46(16): 1333-1338. doi: 10.3321/j.issn:0023-074X.2001.16.003 [49] 刘锁旺, 甘家思, 姚运生, 等, 1997. 西秦岭北缘断裂与海原断裂的走滑转换变形及其与陇山地块的相互作用. 地壳变形与地震, 17(3): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB703.011.htm [50] 刘和甫, 李晓清, 刘立群, 等, 2004. 走滑构造体系盆山耦合与区带分析. 现代地质, 18(2): 139-150. doi: 10.3969/j.issn.1000-8527.2004.02.001 [51] 吴宣志, 吴春玲, 卢杰, 1995. 利用深地震反射研究北祁连-河西走廊地壳细结构. 地球物理学报, 38(增刊Ⅱ): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S2.003.htm [52] 许志琴, 李海兵, 杨经绥, 等, 2001. 东昆仑山南缘大型转换挤压构造带和斜向俯冲作用. 地质学报, 75(2): 156-164. doi: 10.3321/j.issn:0001-5717.2001.02.003 [53] 许志琴, 姜枚, 杨经绥, 1996. 青藏高原北部隆升的深部构造物理作用. 地质学报, 70(3): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htm [54] 许志琴, 杨经绥, 姜枚, 等, 2001. 青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层. 中国科学(D辑), 31(增刊): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1000.htm [55] 许志琴, 杨经绥, 张建新, 等, 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73(3): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001 [56] 许志琴, 杨经绥, 李海兵, 等, 2004. 青藏高原的地体拼合及碰撞动力学. 北京: 地质出版社(待刊).