Low-Temperature Hot-Water in Xiangshan Orefield and Its Relation with Uranium Mineralization
-
摘要: 从矿田现代温热水入手, 运用水文地球化学、同位素水文地质等手段, 结合地热基础理论与方法, 剖析了典型矿床地温特征, 对温热水的补给源、热源进行了研究; 结合铀成矿机理分析, 探讨了热水与铀成矿作用的关系.认为相山矿田温热水属隆起断裂型热水, 大气降水为温热水的主要补给源, 地下水深循环及放射性生热为温热水获得热量的主要途径, 热水活动对铀成矿作出了重要贡献, 铀源主要来自水-岩作用, 形成了受基底构造和火山盖层构造联合控制的地温高场、温热水及铀矿化于一体的空间组合.Abstract: Xiangshan uranium orefield is one of the largest volcanic rock type hydrothermal uranium orefield in China. Beginning with modern warm hot-water in the orefield, and applying hydrogeochemistry and isotopic hydrogeology, this paper (analyzes) the geothermal characteristics of typical deposits, studies supply and heat sources of warm hot-water, and discusses the relation between hot-water and uranium mineralization according to the mechanism of uranium metallogenesis. The warm hot-water in Xiangshan orefield is hot-water of uplift fault type, meteoric water is the major supply source of warm hot- (water); deep circulation of groundwater and radioactive heat are the main channels for warm hot-water to obtain heat energy; hot-water activity made an important contribution to uranium metallogenesis; the uranium source mainly comes from water-rock interaction; a space unit is formed on integration with geothermal high field, warm hot-water and uranium mineralization which are controlled by base tectonics and volcano cover structure.
-
表 1 相山矿田若干铀矿床地温梯度值
Table 1. Geothermic gradie nt of several ur anium deposits in Xiangshan orefield
表 2 温热水的铀同位素比值
Table 2. Ratio of uranium isotope in warm hot-water
表 3 相山矿田GDCC矿床蚀变岩石的微量元素(据黄志章等,1999)
Table 3. Content of trace elements in altered rock of No.6122 deposit in Xiangshan orefield wB/10-6
-
[1] Fan, H. H., Ling, H. F., Wang, D. Z., etal., 2003. Study on metallogenetic mechanism of Xiangshan uranium orefield. Uranium Geology, 19 (4): 208-213 (in Chinese with English abstract). [2] Fei, H. C., Xiao, R. G., 2000. Ore forming fluid evolution and metallogenetic phy sical chemistry. Bulletin of Mineralogy and Geochemistry, 21 (2): 139-144 (in Chinese with English abstract). [3] Huang, Z. Z., Li, X. Z., Cai, G. Q., 1999. Alteration field and type in hydrothermal uranium deposits. Atomic Energy Press, Beijing (in Chinese with English abstract). [4] Jia, L. X., 1992. Geophysical and geochemical investigation methods for geothemal water. Geological Publishing House, Beijing (in Chinese). [5] Li, J. W., Li, Z. J., Fu, Z. R., etal., 2000. Heat sources and hydrothermal uranium mineralization in the SuichuanReshui strike-slip fault zone. Geological Science and Technology In formation, 19 (3): 39-43 (in Chinese with English abstract). [6] Li, X. L., 1992. On the mineralization model of"there sources—Heat, water and uranium". Journal of East China Geological Institute, 15 (2): 101-112 (in Chinese with English abstract). [7] Osmond, J. K., Cowart, J. B., Kaufman, M, I., 1983. Urani-um isotopic disequilibrium in groundwater as an indicator of anomalies. Int. J. Appl. Isot., 34 (1): 283-308. doi: 10.1016/0020-708X(83)90132-1 [8] Qiu, A. J., Guo, L. Z., Zheng, D. Y., etal., 2002. Continental tectonic constraint on formation of Xiangshan largescale uranium deposits with high grade. Geological Publishing House, Beijing (in Chinese). [9] Shao, F., 2000. Genesis of low-thermal water and its relation with uranium mineralizalion in Zoujiashan deposit. Journal of East China Geological Institute, 23 (1): 24-27 (in Chinese with English abstract). [10] Zhang, R. H., Hu, S. M., Wang, J., etal., 2002. Water-rock interaction in typical volcanic rock areas in middle-lower Yangtze valley. China Dadi Press, Beijing (in Chinese). [11] Zhao, T. F., Yuan, F., Yue, S. C., etal., 2002. Water-rock interaction during formation of skarn-type deposits in Yueshan orefield, Anhui Province. Mineral Deposits, 21 (1): 1-9 (in Chinese with English abstract). [12] Zhou, W. B., Sun, Z. X., Li, X. L., 2000. Fossil hydrothermal system and uranium metallogenesis. Geological Publishing House, Beijing (in Chinese). [13] 范洪海, 凌洪飞, 王德滋, 等, 2003. 相山铀矿田成矿机理研究. 铀矿地质, 19 (4): 208-213. doi: 10.3969/j.issn.1000-0658.2003.04.003 [14] 费红彩, 肖荣阁, 2002. 成矿流体溶化与成矿物理化学. 矿物岩石地球化学通报, 21 (2): 139-144. [15] 黄志章, 李秀珍, 蔡根庆, 1999. 热液铀矿床蚀变场及蚀变类型. 北京: 原子能出版社. [16] 贾苓希, 1992. 地下热水调查的物探化探方法. 北京: 地质出版社. [17] 李建威, 李紫金, 傅昭仁, 等, 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19 (3): 39-43. doi: 10.3969/j.issn.1000-7849.2000.03.008 [18] 李学礼, 1992. 论热源、水源、矿(铀) 源三源成矿问题. 华东地质学院学报, 15 (2): 101-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ199202000.htm [19] 邱爱金, 郭令智, 郑大瑜, 等, 2002. 大陆构造作用对相山富大铀矿形成的制约. 北京: 地质出版社. [20] 邵飞, 2000. 邹家山矿床低温热水成因及其与铀矿化关系. 华东地质学院学报, 23 (1): 24-27. doi: 10.3969/j.issn.1674-3504.2000.01.005 [21] 张荣华, 胡书敏, 王军, 等, 2002. 长江中下游典型火山岩区水-岩相互作用. 北京: 中国大地出版社. [22] 周涛发, 袁峰, 岳书仓, 等, 2002. 安徽月山矿田矽卡岩型矿床形成的水岩作用. 矿床地质, 21 (1): 1-9. doi: 10.3969/j.issn.0258-7106.2002.01.001 [23] 周文斌, 孙占学, 李学礼, 2000. 古水热系统与铀成矿作用. 北京: 地质出版社.