Theory and Practice of Systematic Mineral Exploration Based on 5P Met allogenic Prognosis and Quantitative Assessment
-
摘要: 随着地球系统科学的提出, 人们越来越多地从系统的角度来理解和解决地学及其相关的问题, 系统勘查正是这种背景下的产物.系统勘查是对矿产勘查过程中涉及到的种类繁多的控矿因素和找矿标志综合考虑、合理选择、有序排列的过程; 同时, 构建系统勘查数学模型以满足矿产勘查信息化发展的需要.5P成矿预测体系是对这一要求的良好体现.本文在充分分析了以往矿产勘查定量评价模型的基础上, 指出了以往成矿预测与定量评价中对上级控矿因素的作用缺乏必要的考虑, 这有悖于系统勘查的完整性准则.事实上, 上级控矿因素不仅对下级控矿因素具有作用, 而且还会通过下级控矿因素对下级勘查目标具有作用或影响.针对这一问题, 本文对上级控矿因素对下级勘查目标的影响问题进行了探讨, 并给出了上级影响权重的计算公式.在此基础上, 对以往成矿有利度函数进行了改进, 并以滇西北三江南段与喜山期富碱斑岩有关矿产勘查为例, 构建了一个基于5P成矿预测体系的系统勘查数学模型, 利用本文提出的方法, 对铜-钼-金找矿有利地段进行了定量预测.结果表明, 所圈定的预测靶区与已知的铜钼金矿化地段有较高的符合程度, 从而证明了本文提出方法的可行性.
-
关键词:
- 矿产系统勘查 /
- 5P成矿预测与定量评价 /
- 系统勘查数学模型 /
- Cu-Mo-Au找矿有利地段 /
- 云南
Abstract: Research on earth system science has led to the production of computer-based, mathematical systematic exploration. Systematic mineral exploration is a process in which various ore-controlling factors and ore-finding signs are extensively considered, reasonably selected and arranged in order. In addition, the establishment of a mathematical model for systematic exploration meets the need of information development. The 5P met allogenic prognosis system is a better embodiment of systematic exploration. It divides mineral exploration into five different stages, with each obtaining different explored areas. 5P includes: stage 1, probable ore-forming area; stage 2, permissable ore-finding area; stage 3, preferable ore-finding area; stage 4, potential mineral resources; and stage 5, prospective ore body area. Different areas can be delineated through different mathematical models. Based on a full analysis of the previous mathematical models for mineral exploration, this paper points out that the impact of superior ore-controlling factors on subordinate ones is ignored. Thus, the links between the superior and the subordinate are cut off and this violates an integral principle of systematic exploration. In fact, superior ore-controlling factors not only influence the subordinate ones, but also exert influence on the subordinate exploration objects. A formula is presented herein for calculating the weight of the superior over the subordinate, which improves the ore-forming favorability function for delineating different ore-finding areas. A case in Himalayan granitoid rich-alkali porphyry in southern Sanjiang region, northwest Yunnan Province, provides an example for the construction of a systematic exploration model based on the 5P met allogenic prognosis system. A quantitative assessment on the Cu-Mo-Au preferable ore-finding area (the third "P") is conducted. The results show that the consistency between delineating areas and Cu-Mo-Au forming sections is relatively high, indicating the feasibility of the method suggested. -
表 1 2P控矿因素提供的找矿可行地段信息量
Table 1. Ore-finding information of 2P ore-controlling elements
表 2 1P控矿因素对2P控矿因素影响信息量
Table 2. Impact information of 1P to 2P of ore-controlling elements
表 3 2P控矿因素的上级权重
Table 3. Superior weight of 2P ore-controlling elements
表 4 2P控矿因素调整后权重
Table 4. Adjusted weight of 2P ore-controlling elements
表 5 2P控矿因素对3PCu-Mo-Au控矿因素影响信息量
Table 5. Effect information of 2P to 3P ore-controlling elements
表 6 3P控矿因素的上级权重
Table 6. Superior weight of 3P ore-controlling elements
表 7 3P控矿因素调整后权重
Table 7. Adjusted weight of 3P ore-controlling elements
-
[1] Cen, B. X., Xiong, P. F., Wang, D. Y., 1991. Theory and method of mineral system exploration. Earth Science—Journal of China University of Geosciences, 16 (4): 411-417 (in Chinese with English abstract). [2] Sun, H. S., 2004. Analysis of diversity of mineral ization and quantitative resources assessments to regional advantage mineral resources—Case of alkali-rich porphyry in xi-shan period in the northwest of Yunnan Province (Dissertation). China University of Geosciences, Wuhan, China (in Chinese with English abstract). [3] Sun, H. S., Zhao, P. D., Zhang, S. T., et al., 2004. Application of system structural model for mineral resources prospecting. Earth Science Frontiers, 11 (1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401042.htm [4] Wang, S. Y., Liu, G. H., 2002. System analysis. Publishing House of Zhe jiang University, Hangzhou (in Chinese). [5] Zhao, P. D., Chi, S. D., Chen, Y. Q., 1996. A thorough investigation of geo-anomaly: A basis of met allogenic prognosis. Geological Journal of China Universities, 2 (4): 361-373 (in Chinese with English abstract). [6] Zhao, P. D., Chen, Y. Q., 1998. The main way of geo-anomaly location of ore body. Earth Science—Journal of China University of Geosciences, 23 (2): 111-114 (in Chinese with English abstract). [7] Zhao, P. D., Chen, Y. Q., 1999. Geological anomaly unit-based delineation and assessment of preferable gold ore-finding area. Earth Science—Journal of China University of Geosciences, 24 (5): 443-448 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199905000.htm [8] Zhao, P. D., Hu, W. L., Li, Z. J., 1983. Statistic prediction of mineral deposit. Beijing: Geological Publishing House, Beijing, 52-53 (in Chinese). [9] 岑博雄, 熊鹏飞, 王定域, 1991. 矿产系统勘查的理论及其方法. 地球科学——中国地质大学学报, 16 (4): 411-417. [10] 孙华山, 2004. 成矿多样性分析与区域优势矿产资源定量评价——以滇西北喜山期富碱斑岩相关矿产研究为例(博士论文). 武汉: 中国地质大学. [11] 孙华山, 赵鹏大, 张寿庭, 等, 2004. 系统结构模型在矿产勘查中的应用. 地学前缘, 11 (1): 305-310. doi: 10.3321/j.issn:1005-2321.2004.01.028 [12] 汪树玉, 刘国华, 2002. 系统分析. 杭州: 浙江大学出版社. [13] 赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径. 地球科学——中国地质大学学报, 23 (2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.000.htm [14] 赵鹏大, 陈永清, 1999. 基于地质异常单元金矿找矿有利地段圈定与评价. 地球科学——中国地质大学学报, 24 (5): 443-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199905000.htm [15] 赵鹏大, 池顺都, 陈永清, 1996. 查明地质异常: 成矿预测的基础. 高校地质学报, 2 (4): 361-373. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX604.000.htm [16] 赵鹏大, 胡旺亮, 李紫金, 1983. 矿床统计预测. 北京: 地质出版社, 52-53.