Evidence from Fission Track Ages for the Tectonic Uplift of the Himalayan Orogen during Late Cenozoic
-
摘要: 喜马拉雅造山带的隆升,在地质学研究中是一个非常让人感兴趣的问题,为了对其进行定量研究,揭示隆升历史及幅度等相关问题,运用磷灰石、锆石裂变径迹法对研究区淡色花岗岩进行了分析,所取样品的裂变径迹年龄位于17.0~5.7 Ma之间,小于其地层时代或侵入年龄(40~17 Ma),表明研究区喜马拉雅造山带的强烈隆升开始于晚新生代.用磷灰石裂变径迹年龄来计算可知,研究区内花岗岩5.7 Ma以来的冷却速率和剥蚀速率分别为18.421 ℃/Ma和0.526 mm/a.5.7~9.2 Ma间的相对抬升与剥蚀速率为0.229 mm/a,9.2~17.0 Ma间的相对抬升与剥蚀速率为0.032 mm/a.用锆石裂变径迹年龄来计算知,研究区内花岗岩16.2 Ma以来的冷却速率和剥蚀速率分别为12.963 ℃/Ma和0.370 mm/a,冷却速率和剥蚀速率均小于用磷灰石计算的结果.因此说喜马拉雅造山带从9.2 Ma到现在隆升和剥蚀的速率是处于加快的状态.Abstract: The uplift of the Himalayan orogen is an interesting geological problem. In order to quantitatively discuss the uplift,its history,range and correlative problems,this paper analyzes the leucogranite by dating the apatite and zircon fission track ages. The fission track ages,which range from 17.0 to 5.7 Ma,are less than the strata ages and the intruding ages,which range from 40 to 17 Ma. So the authors infer that the violent uplift of the Himalayan orogen began in the late Cenozoic. (According) to the fission track age results of apatite,from 5.7 Ma B.P. the cooling and denudation rates were 18.421 ℃/Ma and 0.526 mm/a respectively. The relative rate of uplift and denudation during 5.7-9.2 Ma B.P.,0.229 mm/a is correspondingly faster than that during 9.2-17.0 Ma B.P.,0.032 mm/a. According to the fission track age results of zircon,the cooling rate and denudation rate from 16.2 Ma B.P.,12.963 ℃/Ma and 0.370 mm/a is less than that calculated with apatite. All the results show that the quick uplift rate and denudation rate of the Himalayan occurred from 9.2 Ma B.P..
-
Key words:
- fission track /
- dating /
- tectonic uplift /
- late Cenozoic /
- Himalayan orogen
-
表 1 裂变径迹实验结果
Table 1. Results of fission track
表 2 磷灰石裂变径迹年龄和隆升、剥蚀速率
Table 2. Rate of uplifting and exhuming counted from fission track ages of apatite and zircon
-
[1] Chen, Z.L., Zhang, Y.Q., Wang, X.F., et al., 2001. Fission track dating of apatite constrains on the Cenozoic uplift of the Altyn Tagh mountain. Acta Geoscientia Sinica, 22(5): 413-418(in Chinese with English abstract). [2] Ding, L., Zhong, D.L., Pan, Y.S., et al., 1997. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis. Chinese Science Bulletin, 44(16): 1497-1500(in Chinese). [3] Green, P.F., Duddy, I.R., Gleadow, A.J.W., et al., 1986. Thermal annealing of fission tracks in apatite. 1, A quantitative description. Chemical Geology(Isotope Geoscience Section), 59: 237-253. doi: 10.1016/0168-9622(86)90074-6 [4] Green, P.F., Duddy, I.R., Laslett, G.M., et al., 1989. Thermal annealing of fission tracks in apatite. 4, Quantitative modeling techniques and extension to geological time scales. Chemical Geology(Isotope Geoscience Section), 79: 155-182. doi: 10.1016/0168-9622(89)90018-3 [5] Li, D.W., 2003. A new model for uplifting mechanism of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 28(6): 593-600(in Chinese with English abstract). [6] Liu, D.M., Li, D.W., Xie, D.F., et al., 2003. Primary study on tectonic landforms in northern part of middle Himalayan orogen. Earth Science—Journal of China University of Geosciences, 28(6): 639-644(in Chinese with English abstract). [7] Reiners, P. W., Zhou, Z. Y., Ehlers, T. A., et al., 2003. Post-orogenic evolution of the Dabie Shan, eastern China, from(U-Th)/He and fission-track thermochronology. American Journal of Science, 303(6): 489-518. doi: 10.2475/ajs.303.6.489 [8] Ventura, B., Lisker, F., 2003. Long-term landscape evolution of the northeastern margin of the Bohemian massif, apatite fission-track data from the Erzgebirge(Germany). International Journal of Earth Sciences, 92(5): 691-700. doi: 10.1007/s00531-003-0344-9 [9] Wagner, G. A., Heil, E., 1991. Apatite fission-track agespectrum based on projected track length analysis. Chemical Geology(Isotope Geoscience Section), 87: 1-9. doi: 10.1016/0168-9622(91)90029-V [10] Wang, G.C., Wu, Y.L., Xiang, S.Y., et al., 2003. Mountain building process and geomorphic migration of Eastern Kunlun Mountains during Quaternary. Earth Science—Journal of China University of Geosciences, 28(6): 583-592(in Chinese with English abstract). [11] Wang, G. C., Yang, W. R., 1998. Some progresses of research methods on the uplift and exhumation of Cenozoic. Earth Science Frontiers, 5(1-2): 151-156(in Chinese with English abstract). [12] Wang, J., 1996. Some existing problems in uplift rate calculated by apatite fission track analysis. Geological Science and Technology In fomation, 16(1): 97-102(in Chinese with English abstract). [13] Wang, Y.B., Wang, J., Wang, S.C., 1998. Fission track evidence for rapid uplift of the Nyalam, higher Himalaya, Tibet, China. Geological Review, 44(4): 430-434(in Chinese with English abstract). [14] Wang, Y., Wan, J.L., Li, D.M., et al., 2001. Thermochro151 nological evidence of tectonic uplift in Nyalam, south Tibetan detachment system. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 292-294(in Chinese with English abstract). [15] Wu, Z.H., Wu, Z.H., 1999. Use of fission track dating in studying the uplift history of orogenic belt. Geological Science and Techonolgy In formation, 18(4): 28-32 (in Chinese with English abstract). [16] Wu, Z.H., Wu, Z.H., 2001. Ordos and Qinshui basin history of uplift denudation. Geological Science and Technology In formation, 20(3): 16-20(in Chinese with English abstract). [17] Yang, W.R., Wang, G.C., Jian, P., 2000. Study on the tectono-chronology of the Dabie orogenic belt. China University of Geosciences Press, Wuhan, 1-17(in Chinese). [18] Yin, G.M., Lu, Y.C., Zhao, H., et al., 2001. Cenozoic tectonic uplifting of Hua mountain. Chinese Science Bulletin, 46(13): 1121-1123(in Chinese). doi: 10.1360/csb2001-46-13-1121 [19] Zeitler, P.K., 1985. Cooling history of the NW Himalaya, Pakistan. Tectonics, 10: 729-741. [20] Zeitler, P.K., Johnson, N.M., Naeser, C.W., et al., 1982. Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature, 298: 255-257. doi: 10.1038/298255a0 [21] 陈正乐, 张乐桥, 王小凤, 等, 2001. 新生代阿尔金山脉隆升历史的裂变径迹证据. 地球学报, 22(5): 413-418. doi: 10.3321/j.issn:1006-3021.2001.05.006 [22] 丁林, 钟大赉, 潘裕生, 等, 1997. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 44(16): 1497-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199516017.htm [23] 李德威, 2003. 青藏高原隆升机制新模式. 地球科学——中国地质大学学报, 28(6): 593-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306002.htm [24] 刘德民, 李德威, 谢德凡, 等, 2003. 喜马拉雅造山带中段北坡构造地貌初步研究. 地球科学——中国地质大学学报, 28(6): 639-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306009.htm [25] 王国灿, 吴燕玲, 向树元, 等, 2003. 东昆仑东段第四纪成山作用过程与地貌变迁. 地球科学——中国地质大学学报, 28(6): 583-592. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200306001.htm [26] 王国灿, 杨巍然, 1998. 地质晚近时期山脉地区隆升及剥露作用研究. 地学前缘, 5(1-2): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY801.024.htm [27] 王军, 1997. 利用磷灰石裂变径迹计算隆升速率的一些问题. 地质科技情报, 16(1): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ701.018.htm [28] 王彦斌, 王军, 王世成, 1998. 高喜马拉雅地区聂拉木花岗岩快速抬升的裂变径迹证据. 地质论评, 44(4): 430-434. doi: 10.3321/j.issn:0371-5736.1998.04.012 [29] 王瑜, 万景林, 李大明, 等, 2001. 藏南伸展拆离系聂拉木一带构造抬升的热年代学证据. 矿物岩石地球化学通报, 20 (4): 292-294. doi: 10.3969/j.issn.1007-2802.2001.04.024 [30] 吴中海, 吴珍汉, 1999. 裂变径迹法在研究造山带隆升过程中的应用介绍. 地质科技情报, 18(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199904007.htm [31] 吴中海, 吴珍汉, 2001. 鄂尔多斯、沁水盆地晚新生代隆升—剥蚀历史. 地质科技情报, 20(3): 16-20. doi: 10.3969/j.issn.1000-7849.2001.03.004 [32] 杨巍然, 王国灿, 简平, 2000. 大别造山带构造年代学. 武汉: 中国地质大学出版社, 1-17. [33] 尹功明, 卢演俦, 赵华, 等, 2001. 华山新生代构造抬升. 科学通报, 46(13): 1121-1123. doi: 10.3321/j.issn:0023-074X.2001.13.016