• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大气降水量对成矿流体热场的影响——以锡矿山锑矿床成矿流体为例

    杨瑞琰 马东升 潘家永

    杨瑞琰, 马东升, 潘家永, 2005. 大气降水量对成矿流体热场的影响——以锡矿山锑矿床成矿流体为例. 地球科学, 30(3): 366-370.
    引用本文: 杨瑞琰, 马东升, 潘家永, 2005. 大气降水量对成矿流体热场的影响——以锡矿山锑矿床成矿流体为例. 地球科学, 30(3): 366-370.
    YANG Rui-yan, MA Dong-sheng, PAN Jia-yong, 2005. Effect of Annual Precipitation to Geotherm of Ore-Forming Fluid: A Case of Antimony Deposits in Xikuangshan. Earth Science, 30(3): 366-370.
    Citation: YANG Rui-yan, MA Dong-sheng, PAN Jia-yong, 2005. Effect of Annual Precipitation to Geotherm of Ore-Forming Fluid: A Case of Antimony Deposits in Xikuangshan. Earth Science, 30(3): 366-370.

    大气降水量对成矿流体热场的影响——以锡矿山锑矿床成矿流体为例

    基金项目: 

    国家“973”项目 G1999043210

    国家自然科学基金项目 40073007

    国家自然科学基金项目 40272080

    详细信息
      作者简介:

      杨瑞琰(1964-), 男, 博士, 副教授, 主要从事流体地球化学的计算与模拟研究.E-mail: yangry1964@163.com

    • 中图分类号: P611.5

    Effect of Annual Precipitation to Geotherm of Ore-Forming Fluid: A Case of Antimony Deposits in Xikuangshan

    • 摘要: 成矿流体热场直接影响矿床的成矿作用.依据湘中盆地的水文地质特征, 以锡矿山锑矿床成矿流体为例, 利用热-重力驱动型流体运移模型, 选择具有代表性的龙山岳坪峰-锡矿山(AB)剖面, 研究大气年降水量的大小对成矿流体热场的影响.首先选取一个对比降水量1200 mm/a, 计算出区域的温度场分布, 然后分别取年平均大气降水量为600、1800和2400 mm/a与对比降水量的温度场进行对比, 得出2种温度场的差值图.模拟结果表明: 大气降水的水量大小对区域流场影响较大, 而对区域温度场的影响不大, 在不同降水量条件下, 其对温度的影响在5%~20%之间.研究结论认为, 大气降水量对成矿流体的热场影响不大.

       

    • 图  1  湘中盆地区域地质简图

      1.花岗岩; 2.前泥盆纪地层; 3.侏罗—白垩纪地层; 4.泥盆—三叠纪盖层; 5.断裂带; 6.锑矿床; 7.剖面位置

      Fig.  1.  Geological units in central Hunan basin

      图  2  不同降水量下的模拟结果

      a. Q=1 200 mm/a时区域温度场和流场; b. Q=600 mm/a与Q=1 200 mm/a时区域温度场的差异; c. Q=1 800 mm/a与Q=1 200 mm/a时区域温度场的差异; d. Q=2 400 mm/a与Q=1 200 mm/a时区域温度场的差异; 1.矿体; 2.流体等温线; 3.温度差值等值线, 实线为正, 虚线为负; 4.流体的流线

      Fig.  2.  Simulation results at various rainfalls

      表  1  不同降水量下流体的流速

      Table  1.   Velocity of flow at various rainfalls

    • [1] Bear, J., 1972. Dynamics of fluids in porous media. Dover, New York, 1-764.
      [2] Deming, D., 1994. Fluid flow and heat transport in the upper continental crust. In: Parnell, J., ed., Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, 78: 27-42.
      [3] Forster, C., Smith, L., 1988a. Groundwater flow systems in mountainous terrain: 1. Numerical modeling technique. Water Resour. Res., 24: 999-1010. doi: 10.1029/WR024i007p00999
      [4] Forster, C., Smith, L., 1988b. Groundwater flow systems in mountainous terrain: 2. Controlling factors. Water Resour. Res., 24: 1011-1023. doi: 10.1029/WR024i007p01011
      [5] Forster, C., Smith, L., 1989. The influence of groundwater flow on thermal regimes in mountainous terrain: A model study. J. Geophys. Res., B94;9439-9451.
      [6] Garven, G., Freeze, R. A., 1984a. Theoretic analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. Am. J. Sci., 284: 1085-1124. doi: 10.2475/ajs.284.10.1085
      [7] Garven, G., Freeze, R. A., 1984b. Theoretic analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 2. Quantitative results. Am. J. Sci., 284: 1125-1174. doi: 10.2475/ajs.284.10.1125
      [8] Garven, G., De, S., Person, M. A., et al., 1993. Genesis of stratabound ore deposits in the Midcontinent basins of North America. 1. The role of regional groundwater flow. Am. J. Sci., 293: 497-568. doi: 10.2475/ajs.293.6.497
      [9] Ma, D. S., Pan, J. Y., Xie, Q. L., 2003. Ore source of Xiang-zhong Sb(Au) deposits: Ⅱ. Evidences of isotopic geochemistry. Mineral Deposits, 22 (1): 78-87 (in Chinese with English abstract).
      [10] Oliver, J., 1992. The spots and stains of plate tectonic. Earth Sci. Reviews, 32: 77-106. doi: 10.1016/0012-8252(92)90013-J
      [11] Pei, R. F., Wu, L. S., Xiong, Q. Y., et al., 1998. The deflection of ore genesis and structure assembling field of mineralization abnormality on super-large deposits in China. Geological Publishing House, Beijing, 202-223 (in Chinese).
      [12] Peng, J. T., Hu, R. Z., Ling, Y. X., et al., 2002a. Sm-Nd isotopic dating of epithermal calcite for the Xikuangshan antimony deposit. Chinese Science Bulletin, 47 (10): 789-792 (in Chinese). doi: 10.1360/csb2002-47-10-789
      [13] Peng, J. T., Hu, R. Z., Zou, L. Q., et al., 2002b. Isotope tracing of ore-forming materials of the Xikuangshan antimony deposit, central Hunan. Acta Mineralogica Sinica, 22 (2): 155-159 (in Chinese with English abstract).
      [14] Peng, J. T., Hu, R. Z., Deng, H. L., et al., 2001. Strontium isotope geochemistry of the Xikuangshan antimony deposit, central Hunara. Geochimica. 30 (3): 248-256 (in Chinese with English abstract).
      [15] Person, M., Raffensperger, J. F., Ge, S., et al., 1996. Basinscale hydrogeologic modeling. Reviews of Geophysics, 34: 61-87. doi: 10.1029/95RG03286
      [16] Rabinowicz, M., Sempere, J. C., Genthon, P., 1999. Thermal convection in a vertical permeable slot: Implications for hydrothermal circulation along mid-ocean ridges. J. Geophys. Res. , 104 (B12): 29275-29292. doi: 10.1029/1999JB900259
      [17] Rao, J. R., Luo, J. L., Yi, Z. J., 1999. The mantle. crustal tectonic metallogenic model and ore. prospecting prognosis in the Xikuangshan antimony ore field. Geophysical & Geochemical Exploration, 23 (4): 241-249 (in Chinese with English abstract).
      [18] Yang, R. Y., Ma, D. S., Pan, J. Y., 2003. Study on the paleogeothermal field of ore-forming fluid to form Xikuang shan Sb deposit. Geochimica, 32 (6): 509-519 (in Chinese with English abstract).
      [19] Yu, C. W., Cen, K., Bao, Z. Y., et al., 1993. Dynamics of the hydrothermal ore-forming processes. China University of Geosciences Press, Wuhan, 1-189 (in Chinese).
      [20] 马东升, 潘家永, 解庆林, 2003. 湘中锑(金)矿床成矿物质来源——Ⅱ. 同位素地球化学证据. 矿床地质, 22 (1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200301011.htm
      [21] 裴荣富, 吴良士, 熊群尧, 等, 1998. 中国特大型矿床成矿偏在性与异常成矿构造聚敛场. 北京: 地质出版社, 202-223.
      [22] 彭建堂, 胡瑞忠, 林源贤, 等, 2002a. 锡矿山锑矿床热液方解石的Sm-Nd同位素定年. 科学通报, 47 (10): 789-792. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200210015.htm
      [23] 彭建堂, 胡瑞忠, 邹利群, 等, 2002b. 湘中锡矿山锑矿床成矿物质来源的同位素示踪. 矿物学报, 22 (2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200202009.htm
      [24] 彭建堂, 胡瑞忠, 邓海琳, 等, 2001. 湘中锡矿山锑矿床的Sr同位素地球化学. 地球化学, 30 (3): 248-256. doi: 10.3321/j.issn:0379-1726.2001.03.008
      [25] 饶家荣, 骆检兰, 易志军, 1999. 锡矿山锑矿田幔-壳构造成矿模型及找矿预测. 物探与化探, 23 (4): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH904.000.htm
      [26] 杨瑞琰, 马东升, 潘家永, 2003. 锡矿山锑矿床成矿流体的热场研究. 地球化学, 32 (6): 509-519. doi: 10.3321/j.issn:0379-1726.2003.06.001
      [27] 於崇文, 岑况, 鲍征宇, 等, 1993. 热液成矿作用动力学. 武汉: 中国地质大学出版社, 1-189.
    • 加载中
    图(2) / 表(1)
    计量
    • 文章访问数:  3598
    • HTML全文浏览量:  87
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2004-10-25
    • 刊出日期:  2005-05-25

    目录

      /

      返回文章
      返回