Determination of K2O in High Potassium Aluminosilicate by Tetraphenylborate Gravimetry
-
摘要: 为了精确测定分解反应过程中钾的挥发量, 结合GB8574-2002, 在样品高钾铝硅酸盐物料(钾长石、碳酸钾焙烧熟料, K2O含量大于15%)处理中采用聚环氧乙烷絮凝沉淀Si, 新制Ca(OH)2溶液除去Mg2+、Fe2+、Fe3+、Mn2+等其他阳离子, 加入碳酸铵稳定溶液pH值以除去Ca2+和Al3+.采用四苯硼钾重量法测定钾含量, 测定结果与表样对照, 相对误差在0.5%以内.实验表明: 利用Ca(OH)2除杂, 溶液pH值须控制在10~ 12;碳酸铵双水解反应后, 溶液pH值须控制在7.35左右以除尽Ca2+和Al3+; 低温(T < 473 K)蒸发溶液除去NH4+, 消除了因生成四苯硼铵沉淀而带来的分析误差.结果表明该方法可以精确测定高钾铝硅酸盐物料的K2O含量, 具有成本低、方便快捷、无需大型仪器之优点.Abstract: A convenient and rapid method was established to determine K2O content in high potassium aluminosilicate(K2O content> 15%), which was obtained by calcining K-feldspar and K2CO3. Combined with the GB8574-2002 potassium tetraphenylborate gravimetry method, silicon was deposited by polyethylene oxide in an acid environment. Other cations such as Mg2+, Fe3+, Fe2+, Mn2+ were removed by the intrusion of newly formed calcium hydroxide solution by controlling pH at 10-12. The remaining Al3+ and Ca2+ were eliminated by salvolatile hydrolyzation which stabilized the solution at about pH = 7.35. Before the potassium tetraphenylborate gravimetry method, the introduced ammonia was removed by low temperature(T < 473 K)calcining to avert ammonium tetraphenylborate precipitation. The relative error in this experiment was less than 0.5% by comparison with standard specimen.
-
表 1 溶液pH值对测定结果的影响
Table 1. pH value influence on test
表 2 样品的化学全分析结果
Table 2. Chemical composition of samples
表 3 本文测试结果Ⅰ与标准试样Ⅱ比较
Table 3. Analysis result and comparison with standard sample
-
[1] Chemical Analysis Lab Group of China University of Geosciences(Beijing), 1990. Silicate rock and mineral analysis. 1st Edition. Geological Publishing House, Beijing, 204-209(in Chinese). [2] Li, L. Q., Lin, C.S., Jiang, W. Q., et al., 1997. Quantity analysis chemistry. University of Science and Technology of China Press, Hefei, 90-93(in Chinese). [3] Liu, J.G., Wang, Y.X., 1994. Coagulating agent for gravimetric determination of silica in rocks and minerals. Rocks and Minerals Analysis, 13(2): 134-136(in Chinese with English abstract). [4] Luo, X.J., Yang, W.D., Li, R.X., et al., 2001. Effect of pH on the solubility of the feldspar and the development of secondary porosity. Bulletin of Mineralogy, Petrology and Geochemistry, 20(2): 103-107(in Chinese with English abstract). [5] Si, X.B., Gao, Y.L., 2002. Development on potassium tetraphenylborate gravimetry. Anhui Chemical Engineering, (4): 46-47(in Chinese with English abstract). [6] Zhang, X.H., Ma, H.W., Yang, J., et al., 2003. An experimental synthesis of 13X zeolite molecular sieves from potassium feldspar powder with high content ratio of Fe2O3. Acta Petrologica et Mineralogica, 22(2): 167-172(in Chinese with English abstract). [7] 李龙泉, 林长山, 江万权, 等, 1997. 定量分析化学. 合肥: 中国科学技术大学出版社, 90-93. [8] 刘建国, 王粤新, 1994. 重量法测定岩石矿物中二氧化硅的几种凝聚剂. 岩矿测试, 113(2): 134-136. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS402.012.htm [9] 罗孝俊, 杨卫东, 李荣西, 等, 2001. pH值对长石溶解度及次生孔隙发育的影响. 矿物岩石地球化学通报, 20(2): 103-107. doi: 10.3969/j.issn.1007-2802.2001.02.007 [10] 司学兵, 高云龙, 2002. 四苯硼酸钠重量法测钾含量方法的改进. 安徽化工, (4): 46-47. doi: 10.3969/j.issn.1008-553X.2002.04.021 [11] 章西焕, 马鸿文, 杨静, 等, 2003. 利用高铁钾长石粉水热合成13X沸石分子筛的实验研究. 岩石矿物杂志, 22(2): 167-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200302011.htm [12] 中国地质大学(北京)化学分析室, 1990. 硅酸盐岩石和矿物分析(第一版). 北京: 地质出版社, 204-209.