Meticulous Depiction Methodology and Application of Complicated Structures of Reciprocal Thin Layers in Northern Songliao Basin
-
摘要: 随着勘探开发的深入, 小断块、小砂体及其隐蔽圈闭所形成的油气藏越来越具有商业价值.松辽盆地北部薄互层复杂构造发育, 幅度5~10m的小幅度构造、断距3~5m的小断层、1~2m厚的薄砂体都可能对油气富集起到重要作用, 其精细刻画需要一系列新的技术方法.根据研究区的地质条件和地震资料的情况, 研究了高精度合成地震记录制作方法、三维相干数据体技术及相干切片断层多边形提取方法以及二维叠偏成图精确空间归位方法等.通过这些方法实现了地震地质层位精细标定、断层的精细解释和二维叠偏成图.这些方法在松辽盆地北部的应用表明, 在断层的延伸位置、破碎带宽度等方面, 解释精度比常规方法有很大提高, 并能识别出断距仅为3~5m的小断层, 在二维工区获得了高精度的成图结果, 不仅提高了构造的解释精度, 而且提高了解释的效率.松辽盆地北部薄互层复杂构造的精细刻画是油藏描述和建立精细地质模型的基础.Abstract: Small fault blocks, small sand bodies and the related subtle traps have gained greater commercial value with the growth in oil and gas exploration and development. The complicated structures of reciprocal thin layers developed in northern Songliao basin, such as small structures with altitudes 5-10m, small faults with throws 3-5m and thin sand bodies 1- 2m thick, play an important role in the accumulation of oil and gas. The meticulous depiction of these complicated structures requires a set of new techniques. We have developed some methods including high precision synthetic seismograms, coherency cubes and fault polygon information extraction, and precise spatial migration technology for 2-D migration sections, according to the geology and seismic data of the northern Songliao basin. We realized meticulous calibration of seismic-geologic horizons, meticulous interpretation of faults and 2-D poststack migration mapping, using those methods. Their application to the northern Songliao basin shows that they can improve the accuracy and efficiency of fault interpretation, such as in defining the extent of faults and the width of their fracture zones, as well as defining small faults with only 3-5m throws. Meticulous depiction of complicated structures of reciprocal thin layers in northern Songliao basin provides a base for reservoir description and the construction of precise geological models.
-
表 1 源13井区T2层构造图对井误差统计
Table 1. Errors comparing with drilling datum of T2 structural map in the area of Yuan 13 well
-
[1] Adam, J.S., Kurt, M., 1999. Delineation of tectonic features offshore Trinidad using 3-D seismic coherence. The Leading Edge, 18(6): 1000. [2] Bahorich, M.S., 1996. The stratigraphic and structural interpretation using 3D coherency. In: Symposium of the 65th meeting of Geophysical Society of America. Translated by Song, Y. . Petroleum Industry Press, Beijing, 143 -152(in Chinese). [3] Cui, F.L., Wang, Y.Q., Chen, S.M., 2001. The interpretation method and effects for seismic data from the thin interbedded formations in the north of Songliao basin. Geophysical Prospecting for Petroleum, 40(2): 63 -76 (in Chinese with English abstract). [4] Feng, X., Liu, C., Yang, B.J., et al., 2001. The producing method and the application of synthetic seismogram of high precision. World Geology, 20(4): 389 -395(in Chinese with English abstract). [5] Kurt, J., Marfurt, R., Lynn, K., et al., 1998.3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 63(4): 1150 -1165. [6] Kurt, J., Marfurt, R., Sudhakar, et al., 1999. Coherency calculation in the presence of structural dip. Geophysics, 64 (1): 104 -111. doi: 10.1190/1.1444508 [7] Li, Z. J., 1999. Method of man-machine interaction of the synthetic seismogram and application. Oil Geophysical Prospecting, 34(Suppl. ): 96 -102(in Chinese with English abstract). [8] Mei, X.M., Huang, J.Z., 1988. Differential geometry. 2nd Edition. Higher Education Press, Beijing(in Chinese). [9] Sun, X.P., Du, S.T., 2003. Development and application of algorithm of coherency cube technique to seismic interpretation. Journal of the University of Petroleum, 27 (2): 32 -40(in Chinese with English abstract). [10] Yang, W. C., 1986. The synthetics of reflection seismic traces in viscoelastic medium. Oil Geophysical Prospecting, 21(6): 615 -623(in Chinese with English abstract). [11] Zhang, X.J., Li, Y.M., Zhong, J.T., et al., 2001. Fault polygon detecting in 3D coherence slice. Computing Techniques for Geophysical and Geochemical Exploration, 23(4): 295 -298(in Chinese with English abstract). [12] Bahorich, M. S., 1996. 利用三维相干性进行地层和构造解释. 美国地球物理学会第65届会议论文集. 宋焰译. 北京: 石油工业出版社, 143-152. [13] 崔凤林, 王允清, 陈树民, 2001. 松辽盆地北部薄互层地震资料解释方法及效果. 石油物探, 40 (2): 63-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200102008.htm [14] 冯晅, 刘财, 杨宝俊, 等, 2001. 高精度合成地震记录制作方法及应用. 世界地质, 20 (4): 389-395. doi: 10.3969/j.issn.1004-5589.2001.04.016 [15] 李宗杰, 1999. 合成地震记录的人机互制方法及应用. 石油地球物理勘探, 34 (增刊): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ1999S1015.htm [16] 梅向明, 黄敬之, 1988. 微分几何(第二版). 北京: 高等教育出版社. [17] 孙夕平, 杜世通, 2003. 相干体技术计算研究及其在地震资料解释中的应用. 石油大学学报(自然科学版), 27 (2): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200302009.htm [18] 杨文采, 1986. 黏弹性介质中反射地震道的合成. 石油地球物理勘探, 21 (6): 615-623. [19] 张向君, 李幼铭, 钟吉太, 等, 2001. 三维相干切片断层多边形检测. 物探化探计算技术, 23 (4): 295-298. doi: 10.3969/j.issn.1001-1749.2001.04.002