• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国西部盆地台盆区高角度断层的成因及控油气作用分析

    康永尚 曾联波 张义杰 文永红 向辉

    康永尚, 曾联波, 张义杰, 文永红, 向辉, 2005. 中国西部盆地台盆区高角度断层的成因及控油气作用分析. 地球科学, 30(4): 459-466.
    引用本文: 康永尚, 曾联波, 张义杰, 文永红, 向辉, 2005. 中国西部盆地台盆区高角度断层的成因及控油气作用分析. 地球科学, 30(4): 459-466.
    KANG Yong-shang, CENG Lian-bo, ZHANG Yi-jie, WEN Yong-hong, XIANG Hui, 2005. Formation Mechanism of High-Obliquity Faults in Platform Areas of Chinese Western Basins and Their Control on Petroleum Migration and Occurrence. Earth Science, 30(4): 459-466.
    Citation: KANG Yong-shang, CENG Lian-bo, ZHANG Yi-jie, WEN Yong-hong, XIANG Hui, 2005. Formation Mechanism of High-Obliquity Faults in Platform Areas of Chinese Western Basins and Their Control on Petroleum Migration and Occurrence. Earth Science, 30(4): 459-466.

    中国西部盆地台盆区高角度断层的成因及控油气作用分析

    基金项目: 

    国家“973”项目 G19990433

    详细信息
      作者简介:

      康永尚(1964—),男,教授,主要从事油气勘探地质、地质工程等方面的教学科研工作. E-mail: kangysh@sina.com

    • 中图分类号: P618.130.2

    Formation Mechanism of High-Obliquity Faults in Platform Areas of Chinese Western Basins and Their Control on Petroleum Migration and Occurrence

    • 摘要: 给出了中国西部盆地台盆区普遍发育高角度(倾角 > 45°) 断层的证据, 从断裂形成的力学机制上分析了高角度断层的成因, 认为中国西部盆地台盆区高角度断层的形成主要受压扭性应力场控制, 同时与脆性地层的变形特点有关.断层面静封闭压力由岩石泊桑比、上覆地层容重、断层埋藏深度和倾角、最大和最小主应力以及断层走向与最大主应力方向的夹角等计算, 作为断层开启性评价的一个指标, 断层面静封闭压力的计算表明, 断层的开启性随断层倾角的增加而增加, 同时, 沿断层面运移的油气所受浮力在平行断层面方向上的分力也随着断层倾角的增加而增加, 这就决定了高角度断层更有利于油气的垂向运移.结合西部盆地的具体分析, 认为中国西部盆地区域性高角度断层是沟通深部成藏动力学系统与中上部成藏动力学系统的重要通道, 是中上部系统成藏的关键, 直接决定着中上部系统中油气的分布, 在每一系统内部发育的高角度断层具有使油气在断层断开的最新层位中优先充注成藏的基本规律.这些认识对指导油气勘探具有重要意义, 而且, 这些认识同样可推广到其他存在高角度断层的盆地中.

       

    • 图  1  塔里木盆地轮南断层与轮南南断层的“Y”字型组合

      Fig.  1.  "Y" type combination between Lunnan fault and southern fault in Lunnan uplift of Tarim basin

      图  2  跃进2号东高点连井剖面

      Fig.  2.  Cross-well profile of the east highland of Yuejin 2

      图  3  滴西1井区TJ3反射层断层分布及左行走滑图(据新疆油田公司勘探开发研究院改编, 2000)

      Fig.  3.  Fault distribution and levorotatory sliding TJ3 reflecting layer in the Dixi 1 zone

      图  4  准噶尔盆地陆东地区燕山晚期不同方向断层在3 000 m深度处的静封闭压力

      Fig.  4.  Static sealing pressure at the depth of 3 000 m on the faults of different directions during the late Yanshan period in Ludong area, Junggar basin

      图  5  沿断层面油气所受浮力的力学分解

      Fig.  5.  Petroleum floating force decomposition along fault

      图  6  塔里木盆地轮南凸起下三叠统油气分布与断层关系

      1.油层; 2.油气层; 3.油水同层; 4.含油水层; 5.含气水层

      Fig.  6.  Relation between fault and distribution of oil & gas of Lower Triassic in Lunnan uplift of Tarim basin

      图  7  油气沿高角度断层运移时的充注机制

      Fig.  7.  Petroleum filling mechanism along high-obliquity faults

      图  8  准噶尔盆地陆东地区成藏模式

      Fig.  8.  Petroleum migration-accumulation mode of Ludong area of Junggar basin

      图  9  塔里木盆地轮南2井油藏油气运聚和调整剖面(顾家裕和周兴熙, 2001)

      1.油层; 2.残余油显示; 3.断层

      Fig.  9.  Profile of petroleum migration-accumulation and adjustment of well Lunnan 2 reservoir in Tarim basin

      表  1  西部叠合盆地部分断层倾角统计

      Table  1.   Statistics of some faults' obliquity in some western basins

    • [1] Allen, P.A., Allen, J.R., 1990. Basin analysis, principle and application. Blackwell Scientific Publications.
      [2] Gu, J.Y., Zhou, X.X., 2001. Tarim basin Lunnan buried hill and occurrence of oil and gas. Petroleum Industry Press, Beijing(in Chinese).
      [3] Kang, Y.S., Qiu, N.S., Liu, L.F., et al., 2004. Influence of fluid dynamic systems on homogenization temperatures of fluid inclusions and its significance— An application example from the Ludong area of Junggar basin, northwestern China. Acta Geologica Sinica, 78(5): 704-709(in Chinese with English abstract).
      [4] Luo, Q., 2002. Fault controlling hydrocarbon theory and petroleum exploration practice. Earth ScienceJournal of China University of Geosciences, 27(6): 751-756(in Chinese with English abstract).
      [5] Luo, X.R., Xiao, L.X., Li, X.Y., et al., 2004. Overpressure distribution and affecting factors in southern margin of Junggar basin. Earth ScienceJournal of China University of Geosciences, 29(4): 404-412(in Chinese with English abstract).
      [6] Perez, R. J., Boles, J., 2002. Evidence and scale of mass transfer associated with a Quaternary thrust fault: Examples from the Wheeler Ridge oilfield, southern San Joaquin basin, California. AAPG Bulletin, 86(13).
      [7] Shutaro, H., Sorkhabi, R., Iwanaga, S., et al., 2002. Fault seal analysis in the Temana field, offshore Sarawak, Malaysia. AAPG Bulletin, 86(13).
      [8] Sibson, R.H., 1994. Crustal stress, faulting and fluid flow, In: Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication, 78: 69-84. doi: 10.1144/GSL.SP.1994.078.01.07
      [9] Smith, D. A., 1980. Sealing and nonsealing faults in Louisiana Gulf salt basin. AAPG Bulletin, 64(2): 145-172.
      [10] Wang, P., Li, J.F., Li, Y.Q., 1994. Exploration and development of complex faulted oil reservoirs. Petroleum Industry Press, Beijing(in Chinese).
      [11] Wang, X.P., Yan, J.J., 1995. Structural framework of major faults in north Tarim basin. Earth ScienceJournal of China University of Geosciences, 20(3): 237-242(in Chinese with English abstract).
      [12] Wei, G.Q., Jia, C.Z., 2001. Tectonic characteristics and petroleum accumulation in extensional-shear fault system in Mesozoic-Cenozoic formations in the northern area of Taibei uplift, Tarim. Acta Petrolei Sinica, 22(1): 19-25(in Chinese with English abstract).
      [13] Wei, G.Q., Jia, C. Z, Yao, H.J., 1995. The relation of thruststrike slip structure and hydrocarbon potential in late Hercynian in north area of Tarim basin. Xinjiang Petroleum Geology, 16(2): 96-102(in Chinese with English abstract).
      [14] Yang, C.L., Wu, Q.Z., Xia, Y.P., 2000. The origin of Mesozoic-Cenozoic extension-torsional fault system in the north positive element in the Tarim basin, and its role in accumulating oil and gas. Oil Geophysical Prospect, 35(4): 461-469(in Chinese with English abstract).
      [15] 顾家裕, 周兴熙, 2001. 塔里木盆地轮南潜山岩溶及油气分布规律. 北京: 石油工业出版.
      [16] 康永尚, 邱楠生, 刘洛夫, 等, 2004. 流体动力系统对流体包裹体均一温度的影响及其意义——以准噶尔盆地陆东地区为例. 地质学报, 78(5): 704-709. doi: 10.3321/j.issn:0001-5717.2004.05.015
      [17] 罗群, 2002. 断裂控烃理论与油气勘探实践. 地球科学——中国地质大学学报, 27(6): 751-756. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206017.htm
      [18] 罗晓容, 肖立新, 李学义, 等, 2004. 准噶尔盆地南缘中段异常压力分布及影响因素. 地球科学——中国地质大学学报, 29(4): 404-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200404004.htm
      [19] 王平, 李纪辐, 李幼琼, 1994. 复杂断块油田详探与开发. 北京: 石油工业出版社.
      [20] 王燮培, 严俊君, 1995. 塔里木盆地北部断层格架分析. 地球科学——中国地质大学学报, 20(3): 237-242.
      [21] 魏国齐, 贾承造, 2001. 塔北隆起北部中新生界张扭性断层系统特征. 石油学报, 22(1): 19-25. doi: 10.3321/j.issn:0253-2697.2001.01.004
      [22] 魏国齐, 贾承造, 姚慧君, 1995. 塔北地区海西晚期逆冲—走滑构造与含油气关系. 新疆石油地质, 16(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD502.001.htm
      [23] 杨春林, 吴奇之, 夏义平, 2000. 塔里木盆地北部隆起中、新生界张扭断层系统成因及其油气聚集的作用. 石油地球物理勘探, 35(4): 461-469. doi: 10.3321/j.issn:1000-7210.2000.04.008
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  3262
    • HTML全文浏览量:  96
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2005-02-13
    • 刊出日期:  2005-07-25

    目录

      /

      返回文章
      返回