Application of Fixed-Al Modified log(Q/K) Graph in Hot Spring System
-
摘要: 为探讨常规和固定铝log (Q/K) 图解法对温泉系统是否有效, 采用WATCH程序, 对江西3个温度较高的温泉, 即庐山温泉、汤湖温泉和横泾温泉, 进行了探测性的研究.采用常规log (Q/K) 图解法计算时, 由于参加计算的4个水样的铝含量均未检出, 计算结果显示只有不含铝的矿物玉髓和方解石相交于温度1 0 0℃附近, 热储总体上没有达到平衡.在采用了固定铝log (Q/K) 图解法并同时考虑冷水的稀释作用计算后, 中低温地热系统中常见的蚀变矿物如浊沸石、纤蛇纹石、萤石和玉髓均显示了较好的收敛性, 收敛的温度大致在1 0 0~ 1 4 0℃.并且上述矿物组合可见于某些温泉的深部钻孔中, 计算结果与实际地质情况相吻合.结果表明固定铝log (Q/K) 图解法可以恢复温泉系统的热平衡状态
-
关键词:
- 固定铝 /
- WATCH程序 /
- log(Q/K)图解 /
- 温泉
Abstract: A comparative study was conducted to probe the feasibility of conventional and fixed-Al modified log (Q/K) graph on hot spring system. Lushan hot spring, Tanghu hot spring and Hengjing hot spring in Jiangxi Province were selected to reconstruct the reservoir equilibrium by log (Q/K) graph, and all the calculation were carried out by WATCH program. Due to the lack of Al in the water analytical data, only chalcedony and calcite intersected around 100 ℃ in normal log (Q/K) graph. So no equilibrium status or temperature could be reconstructed by this method. Calculated by the method by combining the fixed-Al method with the mixing factor, minerals association of laumontite, chrysotile, fluorite and chalcedony converged around 100-140 ℃ in fixed-Al modified log (Q/K) graph, which means the equilibrium status could be successfully reconstructed. These mineral assembles occurred in the borehole of Tanghu hot spring field. The calculating result corresponds with the real hot spring system, which might infer that the fixed-Al log (Q/K) graph could be used to reconstruct the reservoir equilibrium in hot spring system.-
Key words:
- fixed-Al /
- WATCH program /
- log (Q/K) graph /
- hot spring.
-
图 1 研究的温泉分布位置示意图[据李学礼等(2000)修改]
Fig. 1. Location of selected hot springs (modified after Li et al. (2000))
表 1 江西代表性温泉水化学分析结果
Table 1. Chemical composition of Tanghu, Lushan and Hengjing hot springs
-
[1] Arnórsson, S., 2000. Isotopic and chemical techniques in geothermal exploration, development and use: Sampling methods, data handling, interpretation. International Atomic Energy Agency, Vienna. [2] Bjarnason, J. ., 1994. The speciation program WATCH, version 2.1. Orkustofnun, Reykjavik, 7. [3] Browne, P. R. L., 1978. Hydrothermal alteration in active geothermal fields. Ann. Rev. Earth Planet. Sci., 6: 229- 250. doi: 10.1146/annurev.ea.06.050178.001305 [4] Fenner, C.N., 1936. Bore-hole investigations in Yellowstone Park. J. Geol., 44: 225- 315. doi: 10.1086/624425 [5] Huang, S.Y., 1993. Hot spring resources in China. China Cartographic Publishing House, Beijing(in Chinese). [6] Kristmannsdóttir, H., 1978. Alteration of basaltic rocks by hydrothermal activity at 100- 300 ℃. International Clay Conference, 359- 367. [7] Kristmannsdóttir, H., 1982. Alteration in the IRDP drill hole compared with other drill holesin Iceland. Journal of Geophysical Research, 87(8): 6525- 6531. [8] Kristmannsdóttir, H., Tómasson, J., 1978. Zeolite zones in geothermal areas in Iceland. In: Sand, L.B., et al., eds., Natural zeolites, occurrence, properties, use. Pergamon Press Ltd., Oxford, 277- 284. [9] Li, X.L., Sun, Z.X., Zhou, W.B., 2000. Fossil hydrothemal system and the mineralization of uranium. Geological Publishing House, Beijing(in Chinese). [10] Pang, Z.H., 1996. The fixed-Al method applied to Zhangzhou geothermal system, Southeast China. In: Pang, Z. H., Zhang, J.D., Sun, J.H., eds., Advances in solid earth sciences. Science Press, Beijing, 144- 153. [11] Pang, Z., Reed, M., 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochim. Cosmochim. Acta, 62: 1083- 1091. doi: 10.1016/S0016-7037(98)00037-4 [12] Spycher, N.F., Reed, M.H., 1998. SOLVEQ: A computer program for computing aqueous-mineral-gas equilibria. Revised preliminary edition. Department of Geological Sci- ences, University of Oregon, Eugene, OR 97403. [13] Sun, Z.X., 1998. Geothermometry and chemical equilibria of geothermal fluids from Hveragerdi, SW-Iceland, and selected hot springs, Jiangxi Province, SE-China. Geothermal training in Iceland, 373- 402. [14] Sun, Z.X., Wu, H.M., 1999. Calculation of the mineral-fluid equilibrium and the reservoir temperature in geothermal system. Acta Geoscientia Sinica, 20(Suppl. ): 595- 598 (in Chinese with English abstract). [15] Zhang, W.M., 1999. Origin analysis of geothermal water and evaluation of geothermal reservoir temperature in the Hengjing area, south Jiangxi Province, China. Geotectonica et Metallogenia, 23(2): 155- 165. [16] Zhang, Z.S., 2001. Water-rock interaction in the Bakki low- temperature geothermal field, South-west Iceland. Report 17. In: Geothermal training in Iceland 2001. UNU G.T. P., Iceland, 405- 434. [17] Zhang, Z.S., Sun, Z.X., Wang, S.J., 2003. Successful recon-structing the equilibrium status of Tanghu hot spring by using fixed-Al method and its meaningness. Journal of East China Geological Institute, 26(4): 306- 310(in Chinese with English abstract). [18] 黄尚瑶, 1993. 中国温泉资源. 北京: 中国地图出版社. [19] 李学礼, 孙占学, 周文斌, 2000. 古水热系统与铀成矿作用. 北京: 地质出版社. [20] 孙占学, 吴红梅, 1999. 地热系统中矿物-流体化学平衡的判断及热储温度的估计. 地球学报, 20 (增刊): 595-598. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199910001104.htm [21] 张展适, 孙占学, 王素娟, 2003. 固定铝方法成功恢复汤湖温泉热储平衡温度及其研究意义. 华东地质学院学报, 26 (4): 306-310. doi: 10.3969/j.issn.1674-3504.2003.04.002