• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山双河超高压硬玉石英岩显微组构特征及其流变学意义

    王璐 金振民 刘祥文 金淑燕

    王璐, 金振民, 刘祥文, 金淑燕, 2004. 大别山双河超高压硬玉石英岩显微组构特征及其流变学意义. 地球科学, 29(3): 293-302.
    引用本文: 王璐, 金振民, 刘祥文, 金淑燕, 2004. 大别山双河超高压硬玉石英岩显微组构特征及其流变学意义. 地球科学, 29(3): 293-302.
    WANG Lu, JIN Zhen-min, LIU Xiang-wen, JIN Shu-yan, 2004. Microfabric Characteristics of Ultrahigh Pressure Jadeite-Quartzite and Its Rheology Significances in Shuanghe, Dabie Mountains. Earth Science, 29(3): 293-302.
    Citation: WANG Lu, JIN Zhen-min, LIU Xiang-wen, JIN Shu-yan, 2004. Microfabric Characteristics of Ultrahigh Pressure Jadeite-Quartzite and Its Rheology Significances in Shuanghe, Dabie Mountains. Earth Science, 29(3): 293-302.

    大别山双河超高压硬玉石英岩显微组构特征及其流变学意义

    基金项目: 

    国家重点基础研究发展规划项目 G1999075501

    详细信息
      作者简介:

      王璐(1978-) , 女, 博士, 主要从事超高压岩石显微构造研究.E-mail:wanglucug@163.com

    • 中图分类号: P585

    Microfabric Characteristics of Ultrahigh Pressure Jadeite-Quartzite and Its Rheology Significances in Shuanghe, Dabie Mountains

    • 摘要: 硬玉石英岩是大别—苏鲁超高压(UHP) 变质带内重要超高压岩石类型之一, 其变形机制和动力学背景参数(应变、应力、应变速率) 对于全面了解超高压造山带的形成和演化有非常重要的意义.对大别山双河地区超高压硬玉石英岩3个样品中的主要组成矿物硬玉和石英进行显微组构和透射电镜(TEM) 的初步研究.晶格优选方位(LPO) 测量成果表明: 硬玉组构类型与绿辉石相近, 为L, LS型; 石英组构类型主要为单斜对称.TEM研究表明硬玉滑移系以(100) [001]、(110)[001]及(110)1/2[110]为主.石英中位错发育, 滑移系以(0001)[1120]底面滑移为主, 代表硬玉石英岩折返过程中经历的区域性剪切作用

       

    • 图  1  安徽省潜山县双河地区1∶10 000地质图

      1.第四纪; 2.二长花岗片麻岩; 3.碱性花岗片麻岩; 4.黑云斜长片麻岩; 5.二云母片麻岩; 6.榴辉岩; 7.角闪岩; 8.硬玉石英岩; 9.大理岩; 10.宽剪切带; 11.断层; 12.地质边界; 13.推测地质边界; 14.河流; 15.采样点; 16.坝; 17.水库

      Fig.  1.  Geological map of Shuanghe region, Qianshan, Anhui Province (scale: 1∶10 000)

      图  2  硬玉石英岩及硬玉中的显微构造

      a, b.ZH92B、X92, 硬玉中的柯石英包体; c.X4, 拉长的硬玉和石榴石, XZ面; d, e.X4, 硬玉颗粒内的2组裂隙及其中发育的反应边结构, XZ面; f.X4, 穿过不同拉长硬玉颗粒的后期穿透性裂隙, XZ面; g.ZH92B, XZ面; h.WL49B, XZ面, 拉长及成层分布的硬玉和石榴石. a, d, g为单偏光模式, b, c, e, f, h为正交偏光, b为正交锥光模式; Jd.硬玉; Grt.石榴石; Cs.柯石英; Qtz.石英; Sym.后成合晶, Ru.金红石; Zr.锆石

      Fig.  2.  Optical micrographs of the studied jadeite-quartzite and microstructures of jadeite

      图  3  硬玉晶格优选方位(LPOs)

      双河地区硬玉石英岩中硬玉的晶格优选方位, 等面积下半球投影.等密级为1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%.S.页理面; L.线理

      Fig.  3.  LPOs of jadeite in pole figures

      图  4  绿辉石晶格优选方位(LPOs) [据金淑燕和焦述强(1998)修改]

      a.大别双河地区绿辉石晶格优选方位(DS-23号样) (下半球投影, 108颗粒, 等密级1%, 3%, 5%, 7%); b.法国西部绿辉石晶格优选方位(C22号样) (下半球投影, 150颗粒, 等密级1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%)

      Fig.  4.  LPOs of omphacite in pole figures (modified from Jin and Jiao (1998))

      图  5  双河硬玉石英岩中的石英C轴组构

      双河地区硬玉石英岩中石英C轴组构, 等面积下半球投影.等密级分别为2%, 4%, 6%, 16%;1%, 4%, 7%, 16%;1%, 5%, 9%, 29%.S.页理面; L.线理.测量石英颗粒数分别为165, 152, 156

      Fig.  5.  C-axis fabrics of quartz in Shuanghe jadeite quartzites

      图  6  透射电镜衍衬法测定硬玉位错滑移系(样品号: WL49B)

      a.g002双束条件下的明场像, 5条位错线可见; b.硬玉位错的透射电镜明场像

      Fig.  6.  Determination of split systems of jadeite with TEM diffraction contrast method (specimen No.WL49B)

      图  7  硬玉石英岩中石英的透射电镜照片

      a.样品ZH92B中石英的透射电镜明场像; b.样品WL49B中石英的TEM明场像

      Fig.  7.  TEM photos of quartz in jadeite-quartzite

      表  1  双河硬玉石英岩中石榴石、硬玉电子探针数据及峰期变质p-T条件估算值

      Table  1.   Composition of garnets and jadeites in Shuanghe jadeite quartzite and p-T estimates for peak metamorphism  wB/%

      表  2  样品WL49B中所测得的硬玉的滑移系

      Table  2.   Slip system characteristics observed in jadeite of sample WL49B by TEM

    • [1] Abalos, B., 1997. Omphacite fabric variation in the Cabo Ortegal eclogite(NW Spain): Relationships with strain symmetry during high-pressure deformation. Journal of Structural Geology, 19(5): 621- 637. doi: 10.1016/S0191-8141(97)00001-1
      [2] Ayers, J.C., Dunkle, S., Gao, S., 2002. Constraints on timing of peak and retrograde metamorphism in the DabieShan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186: 315- 331. doi: 10.1016/S0009-2541(02)00008-6
      [3] Bascou, J., Tommasi, A., Mainprice, D., 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. Journal of Structural Geology, 24: 1357- 1368. doi: 10.1016/S0191-8141(01)00137-7
      [4] Brenker, F.E., Prior, D.J., Mǜller, W.F., 2002. Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation(LPO). Journal of Structural Geology, 24: 1991- 2005. doi: 10.1016/S0191-8141(02)00010-X
      [5] Bystricky, M., Mackwell, S., 2001. Creep of dry clinopyroxene aggregates. Journal of Geophysical Research, B106(7): 13443- 13454. https://ui.adsabs.harvard.edu/abs/2001JGR...10613443B/abstract
      [6] Chen, J., 1994. Study on slip system of dislocation in jadeite. Acta Petrologica Sinica, 10(3): 317- 322(in Chinese with English abstract).
      [7] Ellis, D.J., Green, D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibrium. Contrib. Mineral. Petrol. , 71: 13- 22. doi: 10.1007/BF00371878
      [8] Gleason, G.C., Green, H.W., 1996. Effect of differential stress on the albite to jadeite+ coesite transition at confining pressures of > 3 GPa. Transactions ofthe American Geophysical Union, Eos. , 77: 662.
      [9] Godard, G., Van Roermund, H.L.M., 1995. Deformation-induced clinopyroxene fabrics from eclogites. Journal of Structural Geology, 17(10): 1425- 1443. doi: 10.1016/0191-8141(95)00038-F
      [10] Hacker, B.R., Christie, J.M., 1990. Effect of stress and deformation on albite breakdown. Transactions of the American Geophysical Union, Eos, 71: 639.
      [11] Helmstaedt, H., Anderson, D.L., Gacasci, A.T., 1972. Petrofabric studies of eclogite, spinel websterite, and spinel-iherzolite xenoliths from kimberlite-bearing breccia pipes in southeastern Utah and northeastern Arizona. Journal of Geophysical Research, 77: 4350- 4365. doi: 10.1029/JB077i023p04350
      [12] Jiang, L.L., Wu, W.P., Fan, L.H., et al., 1998. The geological structure features of the Hanchangchong area, Qianshan, Anhui. Geology of Anhui, 8(1): 1- 9(in Chinese with English abstract).
      [13] Jin, S.Y., Jiao, S.Q., 1998. Fabric measurements of omphacite from ultrahigh pressure eclogite and its rheological significance. Earth Science— Journal of China University of Geosciences, 23(1): 37- 40(in Chinese with English abstract).
      [14] Koons, P. O., 1984. Implication to garnet-clinopyroxene geothermometry of non-ideal solid solution in jadeitic pyroxene. Contrib. Mineral. Petrol. , 88: 340- 347. doi: 10.1007/BF00376759
      [15] Krogh, E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer— A reinterpretation of existing experimental data. Contrib. Mineral. Petrol. , 99: 44- 48. doi: 10.1007/BF00399364
      [16] Li, S.G., Jagoutz, E., Chen, Y.Z., et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077- 1093. doi: 10.1016/S0016-7037(99)00319-1
      [17] Liou, J.G., Zhang, R.Y., Jahn, B., 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, east-central China. Lithos. , 41: 59- 78. doi: 10.1016/S0024-4937(97)82005-1
      [18] Liu, X.C., Guan, Y.X., Zhang, P.P., et al., 1993. Jadeite in high-pressure metamorphic complexes in the Dabie Mountain region. Acta Mineralogica Sinica, 13(4): 341- 345 (in Chinese with English abstract).
      [19] Mauler, A., Bystricky, M., Kunze, K., et al., 2000. Microstructures and lattice preferred orientations in experimentally deformed clinopyroxenes aggregates. Journal of Structural Geology, 22(11- 12): 1633- 1648. https://www.researchgate.net/publication/223264718_Microstructures_and_lattice_preferred_orientations_in_experimentally_deformed_clinopyroxene_aggregates
      [20] Mauler, A., Godard, G., Kunze, K., 2001. Crystallgraphic fabrics of omphacite, rutile and quartz in Vende eclogites(Armorican Massif, France), Consequences for deformation mechanisms and regimes. Tectonophysics, 342: 81- 112. doi: 10.1016/S0040-1951(01)00157-3
      [21] Powell, R., 1985. Regression diagnosis and robust regression in geothermometer/geobarometer calibration: The garnetclinopysoxene geothermometer revisited. Journal of Metamorphic Geology, 3: 231- 243. doi: 10.1111/j.1525-1314.1985.tb00319.x
      [22] Stöckhert, B., Renner, J., 1998. Rheology of crustal rocks at ultrahigh pressure. In: Hacker, B. R., Liou, J.G., eds., When continents collide: Geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer Academic Publishers, Netherlands, 57- 95.
      [23] Su, W., Xu, S.T., Jiang, L.L., et al., 1996. Coesite from the quartz jadeitite, eastern China. Mineral Magazine, 60: 229 - 239. https://www.researchgate.net/publication/283042434_Coesite_from_quartz-jadeitite_in_the_Dabie_Mountains_Eastern_China
      [24] Su, W., Xu, S.T., Wu, W.P., et al., 2000. Geochemical variation of jadeite-quartzite in the Changpu of Dabie Mountains during retrogressive metamorphism. Journal ofMineralogy and Petrology, 20(2): 8- 13(in Chinese with English abstract). https://www.researchgate.net/publication/283042434_Coesite_from_quartz-jadeitite_in_the_Dabie_Mountains_Eastern_China
      [25] Van Roermund, H.L.M., 1983. Petrofabrics and microstructures of omphacites in a high termperature eclogite from the Swedish Caledonides. Bulletin de Mineralogie, 106: 709- 713. doi: 10.3406/bulmi.1983.7691
      [26] Wu, W.P., Xu, S.T., Jiang, L.L., et al., 1998. Quartz-jadeite in ultrahigh-pressure metamorphic belt in the Dabie Mountains, eastern China. Acta Petrologica Sinica, 14 (1): 60- 70(in Chinese with English abstract). https://www.researchgate.net/publication/283441572_Quartz-jadeitite_in_ultrahigh-pressure_metamorphic_belt_in_the_Dabie_Mountains_Eastern_China
      [27] Zhai, M.G., Cong, B.L., Zhao, Z.Y., et al., 1992. High pressure jadeite quartzite in eclogite belt of Dabie Mountain and its geological significance. Chinese Science Bulletin, (11): 1013- 1015(in Chinese).
      [28] Zhuang, Y.X., 1998. Characteristic of garnet jadeite-quartzite and associated rocks in the assemblage of UHP metamorphic rocks in Dabie Mountains— Evidence from genesis of continental crust rocks. Geology in China, (4): 30- 34 (in Chinese).
      [29] 陈晶, 1994. 硬玉位错滑移系及流变学特征的研究. 岩石学报, 10(3): 317- 322. doi: 10.3321/j.issn:1000-0569.1994.03.009
      [30] 江来利, 吴维平, 范良红, 等, 1998. 安徽省潜山县韩长冲地区的地质构造特征. 安徽地质, 8(1): 1- 9. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ801.003.htm
      [31] 金淑燕, 焦述强, 1998. 超高压榴辉岩中绿辉石组构测定及其流变学意义. 地球科学——中国地质大学学报, 23(1): 37- 40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX801.009.htm
      [32] 刘晓春, 关雅先, 张培萍, 等, 1993. 大别山高压变质杂岩中的硬玉. 矿物学报, 13(4): 341- 345. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199304008.htm
      [33] 苏文, 徐树桐, 吴维平, 等. 2000. 大别山菖蒲硬玉石英岩退变质作用过程中岩石地球化学的变异. 矿物岩石, 20(2): 8- 13. doi: 10.3969/j.issn.1001-6872.2000.02.003
      [34] 吴维平, 徐树桐, 江来利, 等, 1998. 中国东部大别山超高压变质杂岩中的石英硬玉岩带. 岩石学报, 14(1): 60- 70. doi: 10.3321/j.issn:1000-0569.1998.01.006
      [35] 翟明国, 丛柏林, 赵中岩, 等, 1992. 大别山榴辉岩带的高压硬玉石英岩块体及其地质意义. 科学通报, (11): 1013- 1015. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199211015.htm
      [36] 庄育勋, 1998. 大别山超高压变质岩组合中石榴硬玉石英岩及相关岩石的特征——陆壳成因岩石的证据. 中国地质, (4): 30- 34. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI199804006.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3602
    • HTML全文浏览量:  113
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2003-03-22
    • 刊出日期:  2004-05-25

    目录

      /

      返回文章
      返回