HISR Method for Parameter Inversion of Solute Transport through Unsaturated Soils
-
摘要: 以非饱和土中溶质迁移参数反演问题为背景, 依据正则化方法的思路, 以Itakura Saito距离作为同伦函数中的平凡问题, 将同伦方法引入非线性参数反演问题的求解, 进而提出一种求解非线性参数反演问题的大范围收敛(HomotoyItakura SaitoRegularization, HISR) 方法.为保证迭代稳定性, 并同时削弱观测噪声的影响, 同伦参数的修正采用了连续化修正方法.本文将HISR方法应用于求解带有平衡及非平衡吸附效应的一维非饱和土中溶质迁移参数反演问题, 计算结果表明HISR方法具有大范围收敛性及计算稳健性, 同时有较强的抵抗观测噪声的能力.Abstract: Taken the parameter inversion of solute transport through unsaturated soils as the application background and homotopy method imported for solving the nonlinear parameter inversion problem, this paper presents a global convergence method, HISR (homotopy Itakura-Saito regularization) method. The Itakura-Saito distance between the iterative parameter value and the estimated parameter value was adopted as the trivial problem in the homotopy function based on the idea of regularization. Moreover, a continuous method is employed to modify the homotopy parameter during iteration in order to ensure the ability of the iteration and the capability of the noise resistance. Problems of parameter inversion of solute transport coupled with equilibrium and non-equilibrium effects through one-dimensional unsaturated soils are carried out as numerical examples, and the computational results clearly demonstrated the features of global convergence and stability of the HISR method. Besides, a favorable solution is obtained even though experimental quantities were contaminated heavily by noise by HISR method.
-
表 1 模拟实验参数数值
Table 1. Value of simulated experimental parameters
表 1 模拟实验参数数值
Table 1. Value of simulated experimental parameters
表 2 不同初始值时的参数反演结果
Table 2. Numerical inversion results for different initial values of parameters
表 2 不同初始值时的参数反演结果
Table 2. Numerical inversion results for different initial values of parameters
表 3 不同噪声强度下的反演结果
Table 3. Numerical inversion value for different noise levels
表 3 不同噪声强度下的反演结果
Table 3. Numerical inversion value for different noise levels
-
[1] El-Jaroudi, A., Makhoul, J., 1991. Discrete all-pole modeling. IEEE Trans. Acoustics, Speech, Signal Processing, 39(2): 411-423. doi: 10.1109/78.80824 [2] El-Jaroudi, A., Makhoul, J., 1991. Discrete all-pole modeling. IEEE Trans. Acoustics, Speech, Signal Processing, 39(2): 411-423. doi: 10.1109/78.80824 [3] Engl, H.W., Hanke, M., 1996. Neubauer, regularization of inverse problems. Kluwer, Dordrecht. [4] Engl, H.W., Hanke, M., 1996. Neubauer, regularization of inverse problems. Kluwer, Dordrecht. [5] Inoue, M., 2000. Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments. Advances in Water Resources, 23: 677-688. doi: 10.1016/S0309-1708(00)00011-7 [6] Inoue, M., 2000. Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments. Advances in Water Resources, 23: 677-688. doi: 10.1016/S0309-1708(00)00011-7 [7] Kamra, S.K., Lennartz, B., Van Genuchten, M.T., et al., 2001. Evaluating non-equilibrium solute transport in small soil columns. Journal of Contaminant Hydrology, 48: 189-212. doi: 10.1016/S0169-7722(00)00156-X [8] Kamra, S.K., Lennartz, B., Van Genuchten, M.T., et al., 2001. Evaluating non-equilibrium solute transport in small soil columns. Journal of Contaminant Hydrology, 48: 189-212. doi: 10.1016/S0169-7722(00)00156-X [9] Li, B.Y., Zhu, Z.H., Zhang, A.X. et al., 1998. The experimental study on the transport of Na+ and Ca++ in unsaturated soil. In: Proceeding of second international conference on unsaturated soils. International Academic Publishers, Beijing, 575-580. [10] Li, B.Y., Zhu, Z.H., Zhang, A.X. et al., 1998. The experimental study on the transport of Na+ and Ca++ in unsaturated soil. In: Proceeding of second international conference on unsaturated soils. International Academic Publishers, Beijing, 575-580. [11] Li, L., Barry, D.A., Morris, J.C., et al., 1999. CXTANNEAL: An improved program for estimating solute transport parameters. Environmental Modelling & Software, 14: 607-611. [12] Li, L., Barry, D.A., Morris, J.C., et al., 1999. CXTANNEAL: An improved program for estimating solute transport parameters. Environmental Modelling & Software, 14: 607-611. [13] Liu, Q.S., 1989. Numerical methods for least square problems. Beijing University of Technology Press, Beijing(in Chinese). [14] Liu, Q.S., 1989. Numerical methods for least square problems. Beijing University of Technology Press, Beijing(in Chinese). [15] Nielsen, D.R., Van Genuchten, M.T., Biggar, J.W., 1986. Water flow and solute transport process in the unsaturated zone. Water Resources Research, 22(9): 895-1085. [16] Nielsen, D.R., Van Genuchten, M.T., Biggar, J.W., 1986. Water flow and solute transport process in the unsaturated zone. Water Resources Research, 22(9): 895-1085. [17] Pang, L.P., Murray, E.C., 1999. Non-equilibrium transport of Cd in alluvial gravels. Journal of Contaminant Hydrology, 36: 185-206. doi: 10.1016/S0169-7722(98)00110-7 [18] Pang, L.P., Murray, E.C., 1999. Non-equilibrium transport of Cd in alluvial gravels. Journal of Contaminant Hydrology, 36: 185-206. doi: 10.1016/S0169-7722(98)00110-7 [19] Parker, J.C., Van Genuchten, M.T., 1984. Determining transport parameters from laboratory and field tracer experiments. Vir. Agric. Ex. Stat. Bull., Blacksburg. [20] Parker, J.C., Van Genuchten, M.T., 1984. Determining transport parameters from laboratory and field tracer experiments. Vir. Agric. Ex. Stat. Bull., Blacksburg. [21] Sun, N.Z., 1994. Inverse problems in groundwater modeling. Kluwer Academic Publisher, Boston. [22] Sun, N.Z., 1994. Inverse problems in groundwater modeling. Kluwer Academic Publisher, Boston. [23] Tikhonov, A., Arsenin, V., 1977. Solutions of ill-posed problems. John Wiley & Sons, Inc., Washington. [24] Tikhonov, A., Arsenin, V., 1977. Solutions of ill-posed problems. John Wiley & Sons, Inc., Washington. [25] Torsten, Z., 1998. Capability of convection-dispersion transport models to predict transient water and solute movement in undisturbed soil columns. Journal of Contaminant Hydrology, 30: 101-128. doi: 10.1016/S0169-7722(97)00034-X [26] Torsten, Z., 1998. Capability of convection-dispersion transport models to predict transient water and solute movement in undisturbed soil columns. Journal of Contaminant Hydrology, 30: 101-128. doi: 10.1016/S0169-7722(97)00034-X [27] Wang, C., 1996. Numerical simulation for water and non-conservative contaminant transport in soils. Journal of Hohai University, 24(3): 5-11(in Chinese with English abstract). [28] Wang, C., 1996. Numerical simulation for water and non-conservative contaminant transport in soils. Journal of Hohai University, 24(3): 5-11(in Chinese with English abstract). [29] Wang, Y., 1996. Homotopy optimization algorithm via computer. Dalian Marine University Press, Dalian(in Chinese). [30] Wang, Y., 1996. Homotopy optimization algorithm via computer. Dalian Marine University Press, Dalian(in Chinese). [31] 刘钦圣, 1989. 最小二乘问题的计算方法. 北京: 北京工业大学出版社. [32] 刘钦圣, 1989. 最小二乘问题的计算方法. 北京: 北京工业大学出版社. [33] 王超, 1996. 水分及非保守污染物在土壤中运移数值模拟. 河海大学学报, 24(3): 5-11. doi: 10.3321/j.issn:1000-1980.1996.03.002 [34] 王超, 1996. 水分及非保守污染物在土壤中运移数值模拟. 河海大学学报, 24(3): 5-11. doi: 10.3321/j.issn:1000-1980.1996.03.002 [35] 王宇, 1996. 计算机优化同伦算法. 大连: 大连海洋大学出版社. [36] 王宇, 1996. 计算机优化同伦算法. 大连: 大连海洋大学出版社.